Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (12): 2264-2270    DOI: 10.3785/j.issn.1008-973X.2019.12.002
机械与能源工程     
基于颗粒流交互理论的水泥净浆流变分布算法
李晓田(),王楚昕,于永强
同济大学 机械与能源工程学院,上海 201804
Rheological distribution algorithm of cement paste based on particle-flow-interaction theory
Xiao-tian LI(),Chu-xin WANG,Yong-qiang YU
School of Mechanical Engineering, Tongji University, Shanghai 201804, China
 全文: PDF(1062 KB)   HTML
摘要:

为缩短回转黏度仪中水泥净浆流场的仿真运算时间,提出一种基于理论流体力学的迭代算法. 根据流场中心对称的性质,对流场进行径向分层;在层内流体连续、均匀的假设下,构建迭代算法,在层内运用雷诺-里符林公式计算每层的剪切速率,并通过颗粒流交互(PFI)理论进一步计算流场中水泥净浆的流变特性参数. 迭代算法的仿真结果与有限差分方法仿真结果的平均误差为0.89%,与试验结果的平均误差为4.23%;迭代算法的仿真用时仅为2.55 s,与有限差分法(仿真用时为5 d)相比,运算效率大大提高. 所提算法可用于回转黏度仪中水泥净浆流场的高效仿真,且可用于水泥净浆PFI参数的快速标定.

关键词: 水泥净浆颗粒流交互(PFI)理论理论流体力学雷诺-里符林公式迭代运算    
Abstract:

An iterative algorithm based on theoretical fluid dynamics was proposed to shorten the simulation time of the cement paste in rotary viscometer. The flow field was layered radially according to the central symmetry of the flow field. An iterative algorithm was constructed under the assumption of continuity and uniformity of the fluid in the layer. The shear rate of each layer was calculated with Reiner-Riwlin Equation, and the rheological parameters of cement paste in the flow field were further calculated with particle-flow-interaction (PFI) theory. The average error between the simulation results of the iterative algorithm and that of the finite difference method was 0.89%. The average error between the simulation results of the iterative algorithm and the experimental results was 4.23%. Compared with the finite difference method, the simulation time was shortened from 5 days to 2.55 seconds, thus the calculation efficiency was greatly improved. The algorithm can be used for efficient simulation for cement paste flow field in rotary viscometer, and also for fast calibration of PFI parameters of cement paste.

Key words: cement paste    particle-flow-interaction (PFI) theory    theoretical fluid mechanics    Reiner-Riwlin equation    iterative operation
收稿日期: 2018-11-08 出版日期: 2019-12-17
CLC:  TU 528.1  
基金资助: 国家“十三五”重点研发计划资助项目(2017YFC07040)
作者简介: 李晓田(1983—),男,助理教授,从事混凝土振动密实机理研究. orcid.org/0000-0002-5357-3860. E-mail: lixiaotian@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李晓田
王楚昕
于永强

引用本文:

李晓田,王楚昕,于永强. 基于颗粒流交互理论的水泥净浆流变分布算法[J]. 浙江大学学报(工学版), 2019, 53(12): 2264-2270.

Xiao-tian LI,Chu-xin WANG,Yong-qiang YU. Rheological distribution algorithm of cement paste based on particle-flow-interaction theory. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2264-2270.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.12.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I12/2264

图 1  有限差分法网格划分示意图
图 2  回转黏度仪转子结构示意图
图 3  黏度仪流场区域径向分层示意图
图 4  单个时间步内黏度仪流场更新流程图
图 5  黏度仪流场内部流变特性参数更新流程图
图 6  黏度仪迭代算法仿真转速曲线
PFI参数 单位 数值 PFI参数 单位 数值
$\widetilde {{\eta _0}}$ Pa·s 0.65 U0 ? 1
a1B3n32/3 Pa·s 33 ma s 30
$\widetilde {{\tau _0}}$ Pa 0 mb s 0
a2B3n32/3 Pa·s 24 ? ? ?
表 1  迭代算法与有限差分法仿真参数设置
图 7  迭代算法、有限差分法仿真结果对比
PFI参数 单位 数值 PFI参数 单位 数值
$\widetilde {{\eta _0}}$ Pa·s 0.451 8 U0 ? 39.259 5
a1B3n32/3 Pa·s 2.220 8 ma s 30
$\widetilde {{\tau _0}}$ Pa 0.601 9 mb s 0
a2B3n32/3 Pa·s 5.300 0 ? ? ?
表 2  变转速试验迭代算法仿真参数设置
图 8  黏度仪试验转速曲线
图 9  试验结果和迭代算法仿真结果对比
1 REINER M, EYRING H Deformation and flow. an elementary introduction to theoretical rheology[J]. Physics Today, 1950, 3 (4): 35- 36
2 FEYS D, WALLEVIK J E, YAHIA A, et al Extension of the Reiner-Riwlin equation to determine modified Bingham parameters measured in coaxial cylinders rheometers[J]. Materials and Structures, 2013, 46 (1/2): 289- 311
3 BRAUN I, REINER M Problems of cross-viscosity[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1952, 5 (1): 42- 53
doi: 10.1093/qjmam/5.1.42
4 TATTERSALL G H, BANFILL P. The rheology of fresh concrete [M]. Pitman Advanced Publishing Program, 1983.
5 王复生 水泥混凝土统一流变模型[J]. 武汉理工大学学报, 1984, (1): 70- 73
WANG Fu-sheng Unified rheological model of cement concrete[J]. Journal of Wuhan University of Technology, 1984, (1): 70- 73
6 BINGHAM E C, REINER M The rheological properties of cement and cement-mortar-stone[J]. Physics, 1933, 4 (3): 88- 96
doi: 10.1063/1.1745167
7 MEWIS J Thixotropy: a general review[J]. Journal of Non-Newtonian Fluid Mechanics, 1979, 6 (1): 1- 20
doi: 10.1016/0377-0257(79)87001-9
8 WALLEVIK J E. Rheology of particle suspensions: fresh concrete, mortar and cement paste with various types of lignosulfonates [D]. Trondheim: Norwegian University of Science and Technology, 2003..
9 王复生, 关瑞芳, 秦晓娟, 等 新拌水泥浆体流变性能及流变模型的探讨[J]. 硅酸盐通报, 2004, 23 (6): 34- 37
WANG Fu-sheng, GUAN Rui-fang, QIN Xiao-juan, et al Study on rheological properties and rheological model of fresh cement paste[J]. Bulletin of The Chinese Ceramic Society, 2004, 23 (6): 34- 37
doi: 10.3969/j.issn.1001-1625.2004.06.009
10 ROUSSEL N, OVARLEZ G, GARRAULT S, et al The origins of thixotropy of fresh cement pastes[J]. Cement and Concrete Research, 2012, 42 (1): 148- 157
doi: 10.1016/j.cemconres.2011.09.004
11 LAPASIN R, LONGO V, RAJGELJ S Thixotropic behaviour of cement pastes[J]. Cement and Concrete Research, 1979, 9 (3): 309- 318
doi: 10.1016/0008-8846(79)90123-6
12 HATTORI K. A new viscosity equation for non-Newtonian suspensions and its application [C] // Proceeding of the RILEM Colloquium on Properties of Fresh Concrete. London: [s.n.], 1990: 83-92.
13 BANFILL P F G. Rheology of Fresh Cement and Concrete: Proceedings of an International Conference, Liverpool, 1990 [M]. [S.l.]: CRC Press, 2014.
14 WALLEVIK J E. Particle flow interaction theory-thixotropic behavior and structural breakdown [C] // Proceedings of the Conference on Our World of Concrete and Structures. Singapore: [s. n.]. 2011: 14-16.
15 WALLEVIK J E Rheological properties of cement paste: Thixotropic behavior and structural breakdown[J]. Cement and Concrete Research, 2009, 39 (1): 14- 29
doi: 10.1016/j.cemconres.2008.10.001
16 WALLEVIK J E Microstructure-rheology: thixotropy and workability loss[J]. Nordic Concrete Research Publications, 2004, 31: 16
17 LANGTANGEN H P, HUSTON R L Computational partial differential equations: numerical methods and Diffpack programming[J]. Computer Physics Communications, 2003, 161 (3): 181- 182
18 FLETCHER C A J. Computational Techniques for Fluid Dynamics [M]. [S.l.]: World Publishing Corporation, 1991.
19 ANDERSON J D, WENDT J. Computational fluid dynamics [M]. New York: McGraw-Hill, 1995.
[1] 杜明月, 田野, 金南国, 王宇纬, 金贤玉. 基于水泥水化的早龄期混凝土温湿耦合[J]. 浙江大学学报(工学版), 2015, 49(8): 1410-1416.
[2] 王海龙, 郭春伶, 孙晓燕, 金伟良. 软水侵蚀混凝土的性能劣化细观机理[J]. J4, 2012, 46(10): 1887-1892.
[3] 王海龙,董宜森,孙晓燕, 金伟良. 干湿交替环境下混凝土受硫酸盐侵蚀劣化机理[J]. J4, 2012, 46(7): 1255-1261.
[4] 延永东, 金伟良, 王海龙. 饱和状态下开裂混凝土内的氯离子输运[J]. J4, 2011, 45(12): 2127-2133.