Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1821-1826    DOI: 10.3785/j.issn.1008-973X.2011.10.021
能源与机械工程     
较大密闭容腔的高精度水压控制
聂勇, 王庆丰, 唐建中
浙江大学 流体传动及控制国家重点实验室,浙江 杭州 310027
High precision pressure control in large closed water volume
NIE Yong, WANG Qing-feng, TANG Jian-zhong
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
 全文: PDF  HTML
摘要:

为了精确模拟水下特种设备工作环境中外部水压的动态变化过程,检验密封装置的密封性能,提出一种基于电液力控制的水压控制方法.设计并建立包含压力传递装置、电液力控制系统等部分的较大密闭容腔水压控制系统.通过分析系统的数学模型,提出“Fuzzy+PID”复合控制策略进行水压控制.在建立的实验系统上进行实验研究.实验结果表明,水压可控范围为0.1~10 MPa,稳态误差为±0.04 MPa,压力无失真斜坡跟踪最大速率可达±2 MPa/s.

Abstract:

A water pressure control method was proposed based on electro-hydraulic pressure control in order to simulate the dynamic water pressure of the special equipment worked and test the performance of sealing device. A large closed volume water pressure control system, including the pressure transfer device and electro-hydraulic pressure control system, was designed. A “Fuzzy+PID” compound control strategy was proposed by analyzing the model of the water pressure control system. Experimental results show that the control range of the pressure is from 0.1 MPa to 10 MPa, the steady-state error is ±0.04 MPa, and the maximum slope trail is ±2 MPa/s.

出版日期: 2011-10-01
:  TH 137  
基金资助:

国家自然科学基金资助项目(50875233), 国家“863”高技术研究发展计划资助项目(2009AA044402).

通讯作者: 王庆丰,男,教授,博导.     E-mail: qfwang@zju.edu.cn
作者简介: 聂勇(1982—),男,博士生,从事电液控制及数字控制技术的研究.E-mail: nyong168@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

聂勇, 王庆丰, 唐建中. 较大密闭容腔的高精度水压控制[J]. J4, 2011, 45(10): 1821-1826.

NIE Yong, WANG Qing-feng, TANG Jian-zhong. High precision pressure control in large closed water volume. J4, 2011, 45(10): 1821-1826.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.10.021        https://www.zjujournals.com/eng/CN/Y2011/V45/I10/1821

[1] 刘子俊,催皆凡.海洋机器人用水下电机的深水密封研究[J].机器人,1997,19(1): 61-64.
LIU Zijun, CUI Jiefan. Research on the deepwater seal for underwater motor of underwater robot [J]. Robot, 1997, 19(1): 6164.[2] 杨华勇,周华,路甬祥.水液压技术的研究现状与发展趋势[J].中国机械工程,2000, 11(12): 1430-1433.
YANG Huayong, ZHOU Hua, LU Yongxiang. Research achievements and developing trends of water hydraulics [J]. China Mechanical Engineering, 2000, 11(12): 1430-1433.
[3] 宋申明,张克,张炳通,等.航天器壳体压力自动加载系统的研究[J].宇航学报,2005, 26(4): 499-504.
SONG Shenming, ZHANG Ke, ZHANG Bingtong, et al. Research on automatic pressure force loading system for shell of spacecraft [J]. Journal of Astronautics, 2005, 26(4): 499-504.
[4] VOSSOUGHI G, DONATH M. Dynamic feedback linearization for electrohydraulically actuated control systems [J]. Journal of Dynamic Systems, Measurement, and Control, 1995, 117(4): 190-195.
[5] 杨军宏,尹自强,李圣怡.阀控非对称液压缸的非线性建模及其反馈线性化[J].机械工程学报,2006, 42(5): 203-207.
YANG Junhong, YIN Ziqiang, LI Shengyi. Nonlinear modelling and feedback linearization of valvecontrolled asymmetrical cylinder [J]. Chinese Journal of Mechanical Engineering, 2006, 42(5): 203-207.
[6] YAO B, BU F, REEDY J, et al. Adaptive robust motion control of signalrod hydraulic actuators: theory and experiment [J]. The IEEE/ASME Transactions on Mechatronics, 2000, 5 (1): 79-91.
[7] 张恩勤,施颂椒,高卫华,等.模糊控制系统近年来的研究与发展[J].控制理论与应用,2001,18(1): 7-11.
ZHANG Enqin, SHI Songjiao, GAO Weihua, et al. Recent researches and developments on fuzzy control system [J]. Control Theory and Applications, 2001, 18(1): 7-11.
[8] 陆玲霞,汪雄海.基于模糊控制的电磁水热系统研究[J].浙江大学学报:工学版,2008, 42(4): 598-601.
LU Lingxia, WANG Xionghai. Electromagnetic water heating system based on fuzzy controller [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(4): 598-601.
[9] LEE C. Fuzzy logic in control systems: fuzzy logic controllerpart I [J]. IEEE Transactions on Systems, Man and Cybernetics, 1990, 20(2): 404-418.

[1] 丁川,丁凡,周星,满在朋,杨灿军. 新型耐压湿式比例电磁铁的研制与对比试验研究[J]. J4, 2014, 48(3): 451-455.
[2] 宋月超, 徐兵, 杨华勇, 张军辉. 改进的柱塞泵流量脉动“实用近似”测试法[J]. J4, 2014, 48(2): 200-205.
[3] 满在朋,丁凡,丁川,刘硕,黄挺峰. 液压软管脉冲试验的发展与研究综述[J]. J4, 2014, 48(1): 21-28.
[4] 施虎, 杨华勇, 龚国芳, 侯典清. 盾构推进液压系统载荷顺应性指标和评价方法[J]. J4, 2013, 47(8): 1444-1449.
[5] 侯典清,龚国芳,施虎,王林涛. 基于顺应特性的新型盾构推进系统设计[J]. J4, 2013, 47(7): 1287-1292.
[6] 施虎,杨华勇,龚国芳,王林涛. 盾构掘进机关键技术及模拟试验台现状与展望[J]. J4, 2013, 47(5): 741-749.
[7] 魏建华,国凯,熊义. 大型装备多轴电液执行器同步控制[J]. J4, 2013, 47(5): 755-760.
[8] 侯典清, 龚国芳, 施虎, 王林涛. 盾构推进系统突变载荷顺应特性研究[J]. J4, 2013, 47(3): 522-527.
[9] 朱旭, 魏建华, 方锦辉. 先导式电液配流系统的动态特性[J]. J4, 2013, 47(2): 193-200.
[10] 张彦廷, 渠迎锋, 刘振东, 马江涛. 天车升沉补偿系统摇摆装置的设计[J]. J4, 2012, 46(12): 2268-2273.
[11] 杜恒, 魏建华, 冯瑞琳. 压力跟踪阀建模、仿真与试验研究[J]. J4, 2012, 46(6): 1034-1040.
[12] 方锦辉, 魏建华, 孔晓武. 并联伺服阀的同步控制策略[J]. J4, 2012, 46(6): 1054-1059.
[13] 满军, 丁凡, 李其朋, 笪靖, 邵森寅. 永磁屏蔽式耐高压高速开关电磁铁[J]. J4, 2012, 46(2): 309-314.
[14] 管成,徐晓,林潇,王守洪. 液压挖掘机回转制动能量回收系统[J]. J4, 2012, 46(1): 142-149.
[15] 黄家海,魏建华,邱敏秀. 液黏调速离合器传动特性分析[J]. J4, 2011, 45(11): 1927-1933.