Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (2): 308-316    DOI: 10.3785/j.issn.1008-9209.2023.12.051
Research Articles     
Control efficiency of avermectin and jinggangmycin mixture on major rice diseases and pests
Meihong SHAO1(),Chu CHENG1,Hanyun KE1,Shiwen HUANG2(),Chunshou LI3()
1.Jiande Agricultural Technology Extension Center, Hangzhou 311600, Zhejiang, China
2.China National Rice Research Institute, Hangzhou 311401, Zhejiang, China
3.Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
Download: HTML   HTML (   PDF(1769KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

With the continuous advancement of ecological and green agricultural construction, environmentally friendly and low-toxicity biopesticides have been widely developed and utilized. This study investigated the control efficiencies of different active ingredient dosages of avermectin and jinggangmycin (A&J) mixture on major rice diseases and pests via both laboratory tests and field tests. The results revealed significant synergistic effects of the A&J mixture on killing Rhizoctonia solani Kühn, rice planthoppers (Sogatella furcifera and Nilaparvata lugens), Chilo suppressalis, Tryporyza incertulas and Nephotettix bipunctatus. This synergism can partially neutralize the resistance of pathogenic fungus and pests, thereby prolonging the duration of pesticide use. The toxic effects of the A&J mixture on Cnaphalocrocis medinalis and Naranga aenescens were found to be similar to those of avermectin alone. Therefore, the A&J mixture has the potential to improve the prevention and control capacities to major rice diseases and pests, and it is a green prevention and control method that is worthy of widespread promotion and application.



Key wordsavermectin      jinggangmycin      mixture      control efficiency      rice      disease and pest     
Received: 05 December 2023      Published: 30 April 2024
CLC:  S481.9  
Corresponding Authors: Shiwen HUANG,Chunshou LI     E-mail: hzjdsmh@163.com;hswswh666@126.com;lichunshou@126.com
Cite this article:

Meihong SHAO,Chu CHENG,Hanyun KE,Shiwen HUANG,Chunshou LI. Control efficiency of avermectin and jinggangmycin mixture on major rice diseases and pests. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 308-316.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.12.051     OR     https://www.zjujournals.com/agr/Y2024/V50/I2/308


阿维菌素与井冈霉素混配对水稻主要病虫害的防治效果

随着生态和绿色农业建设不断推进,环保型低毒生物农药被广泛研发与利用。针对水稻主要病虫害,本研究探讨了不同有效成分用量阿维菌素和井冈霉素混配剂(以下简称阿?井混配剂)在室内试验和田间试验对水稻主要病虫害的防治效果。结果表明:阿?井混配剂对毒杀水稻纹枯病菌、稻飞虱(白背飞虱和褐飞虱)、二化螟、三化螟、黑尾叶蝉有显著的增效作用。其增效作用可部分中和病原菌和害虫的抗药性,从而延长药剂的使用期。使用阿?井混配剂对稻纵卷叶螟和稻螟蛉的毒杀效果与单独使用阿维菌素时的毒杀效果相当。综上所述,生物农药阿维菌素和井冈霉素混配具有提高对水稻主要病虫害防控能力的潜力,并且属于绿色防治方法,值得大力推广应用。


关键词: 阿维菌素,  井冈霉素,  混配,  防治效果,  水稻,  病虫害 

处理

Treatment

2 d4 d6 d

抑制率

Inhibition

rate/%

菌核形成情况

Sclerotium

formation

抑制率

Inhibition

rate/%

菌核形成情况

Sclerotium

formation

抑制率

Inhibition

rate/%

菌核形成情况

Sclerotium

formation

S196.50±1.51B++94.51±0.79B++93.01±1.46C++
S298.01±1.01AB++94.81±1.35B++94.30±1.26BC++
S399.87±0.01A99.24±0.12A97.19±1.23AB++
S499.74±0.12A99.37±0.09A98.78±0.82A++
S599.88±0.02A99.72±0.52A99.33±0.62A++
S625.37±0.11D++++18.82±0.82C++++31.97±1.01D++++
S780.54±2.01C18.82±0.11C+++7.70±0.24E+++
CK0E+++0.00±0.70D++++0.00±0.04F++++
Table 1 Inhibitory effect of avermectin and jinggangmycin (A&J) mixture on the growth and sclerotium formation of Rhizoctonia solani

处理

Treatment

2 h活力

Viability at 2 h

死亡率 Mortality rate/%

校正死亡率

Corrected mortality rate/%

4 h24 h
S1行动减缓,活力下降60.91±0.27D100.00±0.12A100.00A
S2行动减缓,活力下降93.01±0.37A100.00±0.12A100.00A
S3行动减缓,活力下降78.30±0.14C100.00±0.12A100.00A
S4行动减缓,活力下降79.41±0.36C100.00±0.12A100.00A
S5行动减缓,活力下降79.82±0.18C100.00±0.12A100.00A
S6较活泼0.00±0.64E12.95±0.83B0B
S7行动减缓,活力下降82.91±0.26B100.00±0.12A100.00A
CK较活泼0.00±0.64E0.00±0.12C0B
Table 2 Toxicity comparison of avermectin and jinggangmycin mixture to rice planthoppers (first trial)

处理

Treatment

2 h活力

Viability at 2 h

18 h死亡率

Mortality

rate at

18 h/%

校正死亡率

Corrected

mortality

rate/%

S8行动减缓,活力下降92.00±0.70C91.05±0.05C
S9行动减缓,活力下降92.00±0.06C91.05±0.00C
S10行动减缓,活力下降92.86±0.18BC92.01±0.01BC
S11行动减缓,活力下降92.68±0.35BC91.81±0.19C
S12行动减缓,活力下降94.87±0.24B94.26±0.26B
S3行动减缓,活力下降97.30±1.12A96.98±0.98A
S7行动减缓,活力下降92.86±0.18BC91.80±0.81C
S6很活泼10.64±0.53D0.00±1.00D
CK1行动减缓,活力下降97.37±0.35A97.06±0.06A
CK很活跃9.14±0.89D0.00±1.00D
Table 3 Toxicity comparison of avermectin and jinggangmycin mixture to rice planthoppers (second trial)

处理

Treatment

0.5 h活力

Viability at 0.5 h

死亡率

Mortality rate/%

18 h18.5 h43 h
S11/3迟钝73.33±0.07C86.67±1.17C86.67±0.25C
S2个别迟钝62.50±0.24D86.67±0.17C93.75±0.33B
S31/5迟钝33.33±0.04E64.29±0.21E92.86±0.44B
S41/3迟钝61.54±0.28D73.33±0.17D80.00±0.08D
S53/5将死,2/5迟钝100.00±0.26A100.00±0.50A100.00±0.42A
S6活泼0.00±0.26F0.00±0.50F0.00±0.42E
S7个别迟钝86.67±0.41B90.52±1.02B92.31±0.58B
CK1活泼0.00±0.26F0.00±0.50F0.00±0.42E
CK活泼0.00±0.26F0.00±0.50F0.00±0.42E
Table 4 Toxicity test of avermectin and jinggangmycin mixture on Cnaphalocrocis medinalis

处理

Treatment

死亡率 Mortality rate

校正死亡率

Corrected mortality rate

0.5 h18 h
S166.67±0.24E100.00A100.00A
S277.78±0.35C100.00A100.00A
S375.00±0.07D100.00A100.00A
S488.89±0.46B100.00A100.00A
S588.89±0.57B100.00A100.00A
S60.00±0.43F0B0B
S7100.00±0.43A100.00A100.00A
CK10.00±0.43F0B0B
CK0.00±0.43F0B0B
Table 5 Toxicity test of avermectin and jinggangmycin mixture on Naranga aenescens

处理

Treatment

稻飞虱 Rice planthoppers

水稻纹枯病校正防效

Corrected control efficiency on rice

sheath blight/%

药前百丛稻飞虱数

Number of rice planthoppers

per 100 bushes before medication

校正防效

Corrected control efficiency/%

6 d13 d20 d6 d13 d20 d
S101 250A87.5±0.189B76.3±0.014C80.6±0.157C37.0±0.171E82.1±0.386B100.0A
S13802A88.1±0.131B92.2±0.186A91.0±0.243B45.5±0.171B100.0±0.114A100.0A
S31 049A94.9±2.376A93.8±0.486A93.1±0.343A51.6±0.271A100.0±0.114A100.0A
S71 231A32.7±0.460C38.7±0.314D43.3±0.457D39.4±0.071D100.0±0.114A100.0A
CK11 081A85.5±0.655B87.3±0.286B89.9±0.143B11.2±0.529F33.0±0.186C100.0A
CK2988A89.3±0.200B88.4±0.386B91.4±0.643AB41.5±0.171C100.0±0.114A100.0A
CK31 057A0.0±1.150D0.0±1.014E0.0±0.757E0.0±0.329G0.0±0.114D0B

处理

Treatment

药后41 d稻穗瘟株防效

Control efficiency of rice blast

per plant (41 d after medication)/%

结实率增幅

Increasing rate of seed

setting rate/%

实际产量

Actual rice yield/

(kg/hm2)

实际产量增幅

Increasing rate of

actual rice yield/%

S1055.8±0.186C5.1±0.371E8 958.5±3.780E9.1±0.386D
S1359.8±0.386B12.0±0.287B9 468.6±6.550B15.3±0.414B
S380.1±0.486A14.8±0.329A9 761.7±18.470A18.8±0.914A
S752.1±0.114D7.8±0.171D8 880.3±8.177F8.1±0.486D
CK135.9±0.214E10.6±0.129C9 201.8±8.519D12.0±0.114C
CK252.5±0.114D14.0±0.529A9 377.6±6.687C14.2±0.314BC
CK30.0±0.614F0.0±0.471F8 214.7±26.601G0.0±0.886E
Table 6 Effects of avermectin and jinggangmycin mixture on the control of major pests and diseases and rice yield
[1]   刘蓉,赵薇,农向群,等.生物杀虫剂组合在有机水稻种植中的作用效果[J].植物保护,2023,49(3):310-316. DOI:10.16688/j.zwbh.2022165
LIU R, ZHAO W, NONG X Q, et al. Efficacy of combined biological insecticides under rice farming without chemical fertilizers and chemical pesticides[J]. Plant Protection, 2023, 49(3): 310-316. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2022165
[2]   刘潇.生物化学农药发展现状及趋势分析[J].化学工业,2021,39(1):53-58. DOI:10.3969/j.issn.1673-9647.2021.01.010
LIU X. Development status and trend analysis of bioche-mical pesticides[J]. Chemical Industry, 2021, 39(1): 53-58. (in Chinese with English abstract)
doi: 10.3969/j.issn.1673-9647.2021.01.010
[3]   张开.微生物农药的研究进展[J].四川蚕业,2021,49(2):10-12. DOI:10.13886/j.cnki.sccy.2021.02.004
ZHANG K. Research progress of microbial pesticides[J]. Sichuan Canye, 2021, 49(2): 10-12. (in Chinese)
doi: 10.13886/j.cnki.sccy.2021.02.004
[4]   王丁,杨雪,刘春雷,等.生物农药研究进展[J].绿色科技,2018(24):179-181. DOI:10.16663/j.cnki.lskj.2018.24.064
WANG D, YANG X, LIU C L, et al. Research progress on biological pesticide[J]. Journal of Green Science and Tech-nology, 2018(24): 179-181. (in Chinese with English abstract)
doi: 10.16663/j.cnki.lskj.2018.24.064
[5]   李铭,冯伟,崔玉,等.阿维菌素类药物毒理学研究进展[J].安徽农学通报,2013,19(20):29-32. DOI:10.16377/j.cnki.issn1007-7731.2013.20.037
LI M, FENG W, CUI Y, et al. Research advances of aver-mectins toxicology[J]. Anhui Agricultural Science Bulletin, 2013, 19(20): 29-32. (in Chinese with English abstract)
doi: 10.16377/j.cnki.issn1007-7731.2013.20.037
[6]   文莹,张立新.阿维菌素的中国“智”造[J].遗传,2018,40(10):888-899. DOI:10.16288/j.yczz.18-194
WEN Y, ZHANG L X. Avermectins, intelligently made in China[J]. Hereditas, 2018, 40(10): 888-899. (in Chinese with English abstract)
doi: 10.16288/j.yczz.18-194
[7]   缑仲轩,和凤,李紫萱,等.阿维菌素研究进展与产业综述[J].中国抗生素杂志,2022,47(11):1139-1148. DOI:10.13461/j.cnki.cja.007429
GOU Z X, HE F, LI Z X, et al. Research advances and the industry of avermectin[J]. Chinese Journal of Antibiotics, 2022, 47(11): 1139-1148. (in Chinese with English abstract)
doi: 10.13461/j.cnki.cja.007429
[8]   王智烨,徐茜,钱海丰.FDA水解检测井冈霉素的土壤微生物活性效应[J].土壤通报,2007,38(5):1030-1032. DOI:10.19336/j.cnki.trtb.2007.05.045
WANG Z Y, XU X, QIAN H F. Effect of jinggangmycin on microbial activities in soil by FDA hydrolysis[J]. Chinese Journal of Soil Science, 2007, 38(5): 1030-1032. (in Chinese)
doi: 10.19336/j.cnki.trtb.2007.05.045
[9]   罗举,刘宇,龚一飞,等.我国水稻“两迁”害虫越冬情况调查[J].应用昆虫学报,2013,50(1):253-260. DOI:10.7679/j.issn.2095-1353.2013.033
LUO J, LIU Y, GONG Y F, et al. Investigation of the overwintering of three species of rice pest, Nilaparvata lugens, Sogatella furcifera and Cnaphalocrocis medinalis in China[J]. Chinese Journal of Applied Entomology, 2013, 50(1): 253-260. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2013.033
[10]   钟朝军,戴长庚,毛向华.水稻主要虫害绿色防控技术研究[J].耕作与栽培,2022,42(6):123-124. DOI:10.13605/j.cnki.52-1065/s.2022.06.008
ZHONG C J, DAI C G, MAO X H. Study on green control technology of main pests in rice[J]. Tillage and Cultivation, 2022, 42(6): 123-124. (in Chinese)
doi: 10.13605/j.cnki.52-1065/s.2022.06.008
[11]   TANG Q Y, ZHANG C X. Data processing system (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J]. Insect Science, 2013, 20(2): 254-260. DOI: 10.1111/j.1744-7917.2012.01519.x
doi: 10.1111/j.1744-7917.2012.01519.x
[12]   张穗,郭永霞,唐文华,等.井冈霉素A对水稻纹枯病菌的毒力和作用机理研究[J].农药学学报,2001,3(4):31-37. DOI:10.3321/j.issn:1008-7303.2001.04.004
ZHANG S, GUO Y X, TANG W H, et al. Studies on the toxicity and mechanism of jinggangmycin A on Rhizoctonia solani AG-1 IA [in vitro (on PDA) and in vivo (in rice plant)[J]. Chinese Journal of Pesticide Science, 2001, 3(4): 31-37. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-7303.2001.04.004
[13]   李广泽,黄柯程,朱卫锋,等.11%阿维菌素•三氟苯嘧啶悬浮剂防治广东稻区稻飞虱和稻纵卷叶螟的药效试验评价[J].世界农药,2021,43(8):26-32. DOI:10.16201/j.cnki.cn10-1660/tq.2021.08.04
LI G Z, HUANG K C, ZHU W F, et al. Field efficacy of abamectin•triflumezopyrim 11% SC against rice planthoppers and rice leaf folders in Guangdong Province[J]. World Pesticide, 2021, 43(8): 26-32. (in Chinese with English abstract)
doi: 10.16201/j.cnki.cn10-1660/tq.2021.08.04
[14]   袁静,郁季平,陈杰,等.阿维菌素和环氧虫啶混配对水稻褐飞虱的协同杀虫作用[J].农药,2014,53(11):840-841. DOI:10.16820/j.cnki.1006-0413.2014.11.018
YUAN J, YU J P, CHEN J, et al. Synergistic insecticidal effect of the mixture of abamectin and cycloxaprid on Nilaparvata lugens [J]. Agrochemicals, 2014, 53(11): 840-841. (in Chinese with English abstract)
doi: 10.16820/j.cnki.1006-0413.2014.11.018
[15]   邹晓阳,谢有福,秦厚国,等.30%虱纹灵防治稻飞虱田间试验[J].江西植保,1995,18(4):14.
ZOU X Y, XIE Y F, QIN H G, et al. Field experiment on the control of rice planthopper with 30% Shiwenling[J]. Jiangxi Plant Protection, 1995, 18(4): 14. (in Chinese)
[16]   农业部种植业管理司.农业部关于印发《到2020年化肥使用量零增长行动方案》和《到2020年农药使用量零增长行动方案》的通知[EB/OL]. (2015-03-18)[2023-11-01].
Ministry of Agriculture. Department of Crop Management. The notices of the Ministry of Agriculture on the issuance of The Action Plan for Zero Growth of Fertilizer Use by 2020 and The Action Plan for Zero Growth of Pesticide Use by 2020[EB/OL]. (2015-03-18)[2023-11-01]. (in Chinese)
[17]   张欧,王京安,顾辉,等.湖北省稻飞虱抗药性试验研究[J].湖北植保,2018(5):11-12. DOI:10.3969/j.issn.1005-6114.2018.05.005
ZHANG O, WANG J A, GU H, et al. Experimental study on pesticide resistance of rice planthoppers in Hubei Province[J]. Hubei Plant Protection, 2018(5): 11-12. (in Chinese)
doi: 10.3969/j.issn.1005-6114.2018.05.005
[18]   温玉丛,范凯华,师慈,等.褐飞虱对吡虫啉的田间抗性动态分析[J].南京农业大学学报,2010,33(4):55-58. DOI:10.7685/j.issn.1000-2030.2010.04.010
WEN Y C, FAN K H, SHI C, et al. Dynamics in imidacloprid resistance in field population of Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Journal of Nanjing Agricultural University, 2010, 33(4): 55-58. (in Chinese with English abstract)
doi: 10.7685/j.issn.1000-2030.2010.04.010
[19]   张穗,许文霞,薛银根,等.郑州郊区水稻纹枯病菌对井冈霉素敏感性的初步研究[J].中国生物防治,1995,11(4):171-173.
ZHANG S, XU W X, XUE Y G, et al. A preliminary study on the sensitivity of rice sheath blight fungi (Rhizoctonia solani) to jinggangmycin in Zhengzhou suburbs[J]. Chinese Journal of Biological Control, 1995, 11(4): 171-173. (in Chinese with English abstract)
[1] Haowei NA,Yinghan LIU,Lufeng ZHAO,Jianjun TANG,Liangliang HU,Xin CHEN. Impact of intercropping of rice cultivars on methane emissions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(2): 270-279.
[2] Tong QI,Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU. Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 109-122.
[3] Jia WEN,Xifeng LIANG,Yongwei WANG. Research on semantic segmentation of parents in hybrid rice breeding based on improved DeepLabV3+ network model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 893-902.
[4] Huiling ZENG,Zuyi MO,Qiaoxian PU,Jiashu WANG,Kai FAN,Zhaowei LI. Cloning and expression analysis of OsSPL3 promoter in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 319-327.
[5] Linze YANG,Huixia SHOU. Effects of deoxymugineic acid from rice root exudates on bacterial community composition in rhizosphere and root endosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 376-388.
[6] Mengqi Lü, Sunghwan JUNG, Zhihong MA, Liang WAN, Dawei SUN, Haiyan CEN. Phenotyping analysis of rice lodging based on a nondestructive mechanical platform[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 129-140.
[7] Jiannan ZHANG,Yiming WANG,Jiejing ZHANG,Lei CHEN,Jinyan LUO,Jianping YI,Bin LI,Qianli AN. Detection and identification of Xanthomonas oryzae pv. oryzicola using quantitative real-time PCR and digital PCR[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 55-64.
[8] Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.
[9] Longda GONG,Kai CHEN,Dan LI,Mei CAI,Jingwen WANG,Qichun ZHANG. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368.
[10] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[11] Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
[12] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[13] Hongyu LI,Kun LI,Zhi YANG. Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 404-414.
[14] Zhen WANG,Lei HE,Yingping XIAO,Xiandong LU,Yanhong LIU,Wen LU,Shoufeng WANG. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 193-202.
[15] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.