Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 319-327    DOI: 10.3785/j.issn.1008-9209.2022.05.091
Crop sciences     
Cloning and expression analysis of OsSPL3 promoter in rice
Huiling ZENG1(),Zuyi MO1,Qiaoxian PU1,Jiashu WANG1,Kai FAN2,Zhaowei LI1()
1.College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
2.College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
Download: HTML   HTML (   PDF(3317KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

OsSPL transcription factor plays an important role in the development and stress response of rice (Oryza sativa) roots, leaves, floral organs, and ears. In this study, the OsSPL3 promoter was analyzed to explore the expression pattern of OsSPL3 transcription factor in rice and its response to drought stress. The Cis-acting elements in the OsSPL3 promoter region were analyzed by PLACE and Plant CARE online softwares, and the recombinant expression vector of OsSPL3 promoter and β-glucuronidase(GUS) gene was constructed, which was transformed into ZH11 rice callus, and positive transgenic plants were obtained by screening. The GUS expression activity of pOsSPL3-GUS transgenic plants and the expression patterns under drought stress and abscisic acid (ABA) treatments were detected. The results of promoter analysis showed that in addition to the necessary transcription initiation core elements and light-responsive elements, the OsSPL3 promoter region also included three MYB-involved drought-inducible elements, three gibberellin-responsive elements, two anaerobic induction essential elements, one low temperature response element, one endosperm expression regulatory element, one zein metabolism regulatory element and one meristem expression-related regulatory element. The results of GUS staining showed that the expression activity of GUS gene in young leaves, stem sheaths, coleoptiles and other young tissues was high, as well as in the vigorous growth parts of roots such as root cap, meristem zone, and elongation zone. In addition, the drought stress could significantly enhanced the GUS activity of transgenic rice leaves and roots. It shows that OsSPL3 transcription factor plays a regulatory role in the process of coleoptile growth, new leaf formation, root extension and stem sheath elongation after seed germination, and OsSPL3 transcription factor is also involved in the response process of rice drought stress.



Key wordsrice (Oryza sativa)      OsSPL3 transcription factor      promoter      β-glucuronidase (GUS)      drought stress     
Received: 09 May 2022      Published: 25 June 2023
CLC:  S511.22  
Corresponding Authors: Zhaowei LI     E-mail: 18349325508@163.com;lizw197@163.com
Cite this article:

Huiling ZENG,Zuyi MO,Qiaoxian PU,Jiashu WANG,Kai FAN,Zhaowei LI. Cloning and expression analysis of OsSPL3 promoter in rice. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 319-327.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.05.091     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/319


水稻OsSPL3启动子克隆及表达分析

OsSPL转录因子在水稻(Oryza sativa)根系、叶片、花器官、穗等发育与逆境响应过程中起重要作用。本文通过对OsSPL3启动子的分析,探究了OsSPL3转录因子在水稻中的表达模式及其对干旱胁迫的响应方式。利用PLACE和Plant CARE在线软件分析OsSPL3启动子区的顺式作用元件,并构建OsSPL3启动子与β-葡糖醛酸糖苷酶(β-glucuronidase, GUS)基因的重组表达载体,转化‘中花11’(ZH11)水稻愈伤组织,筛选获得阳性转基因植株,且对pOsSPL3-GUS转基因植株的GUS表达活性以及在干旱胁迫与脱落酸(abscisic acid, ABA)处理下的表达方式进行检测。启动子分析结果表明,OsSPL3启动子区除包含必要的转录起始核心元件与光响应元件外,还包括3个MYB参与的干旱诱导元件、3个赤霉素响应元件、2个厌氧诱导必需作用元件、1个低温响应作用元件、1个胚乳表达调控元件、1个玉米醇溶蛋白代谢调控元件和1个分生组织表达相关调控元件。GUS染色结果显示,GUS基因在新生叶片、茎鞘、胚芽鞘等幼嫩组织及根冠、分生区、伸长区等根系旺盛生长部位中表达活性较高。此外,干旱胁迫能明显增强转基因水稻叶片与根系的GUS活性。本研究结果表明,OsSPL3转录因子在水稻种子萌发后的胚芽鞘生长、新叶发生、根系延伸等器官发育与茎鞘伸长等过程中发挥调控作用,同时,OsSPL3转录因子还参与水稻干旱胁迫响应过程。


关键词: 水稻,  OsSPL3转录因子,  启动子,  β-葡糖醛酸糖苷酶,  干旱胁迫 
Fig. 1 Cloning of OsSPL3 promoter by PCR amplificationM: DL5000 DNA marker; 1: OsSPL3 promoter.

元件名称

Element name

基序

Motif

数量

Number

碱基位置

Base position/bp

生物学功能

Biological function

O2-siteGATGATGTGG11 827玉米醇溶蛋白代谢调控元件
CAT-boxGCCACT1566分生组织表达相关调控元件
LTRCCGAAA198低温响应作用元件
AREAAACCA2672, 906厌氧诱导必需作用元件
GCN4_motifTGAGTCA11 970胚乳表达调控元件
LAMP-elementCTTTATCA11 865光响应作用元件
MBSCAACTG3134, 1 966, 171MYB参与的干旱诱导元件
TATA-boxTATA/C(A)A224, 5, 7, 9, ...转录起始核心元件
GA-motifATAGATAA1875光响应作用元件
CAAT-boxCAAAT94, 143, 356, 575, 856, ...增强子区保守作用元件
Gap-boxCAAATGAA(A/G)A1767光响应作用元件
P-boxCCTTTTG3111, 238, 507赤霉素响应元件
TCT-motifTCTTAC1523光响应作用元件
Sp1GGGCGG183光响应作用元件
Table 1 Analysis of Cis-acting elements of OsSPL3 promoter
Fig. 2 Identification of positive transgenic plants by PCR amplificationM: DL2000 DNA marker; 1: Positive control; 2-22: Hygromycin genes; 23: Negative control.
Fig. 3 GUS staining for different tissues of transgenic rice at the seedling stage and detection of OsSPL3 expression levels in different tissues of wild-type ZH11 riceA. Tip of young leaf; B. Young leaf and fully-unfolded top 2nd leaf; C. Young leaf, top 2nd leaf, and top 3rd leaf; D. Top 2nd leaf, top 3rd leaf, and upper part of leaf sheath; E. Middle part of leaf sheath; F. Near base of leaf sheath; G. Radicle on the residual seed attached to roots; H-I. Primary roots, adventitious roots, branch roots, and lateral roots; J. Ear tissue located on the junction of leaf blade and leaf sheath; K. Coleoptile and young leaves; L. Adventitious roots after seed germination. The scale is 0.5 cm.
Fig. 4 GUS staining detection for the leaves and roots of transgenic rice under the PEG6000 stress and ABA treatmentA, D. Normal nutrient solution culture; B, E. 20% PEG6000 stress; C, F. 100 µmol/L ABA treatment. The scale is 0.5 cm.
Fig. 5 Expression levels of GUS gene in the leaves and roots of pOsSPL3-GUStransgenic rice under the PEG6000 stress and ABA treatmentA, C. Leaves; B, D. Roots. Different lowercase letters above bars indicate significant differences at the 0.05 probability level, and the same as below.
Fig. 6 Expression levels of OsSPL3 in the leaves of wild-type ZH11 rice under the PEG6000 stress and ABA treatment
[1]   陈开,唐瑭,张冬平,等.生长素和细胞分裂素参与构建水稻根系的研究进展[J].植物生理学报,2020,56(12):2495-2509. DOI:10.13592/j.cnki.ppj.2020.0398
CHEN K, TANG T, ZHANG D P, et al. Recent advances in auxin-cytokinin interactions involved in shaping architecture of rice root system[J]. Plant Physiology Journal, 2020, 56(12): 2495-2509. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.2020.0398
[2]   郭韬,余泓,邱杰,等.中国水稻遗传学研究进展与分子设计育种[J].中国科学(生命科学),2019,49(10):1185-1212. DOI:10.1360/SSV-2019-0209
GUO T, YU H, QIU J, et al. Advances in rice genetics and breeding by molecular design in China[J]. Scientia Sinica Vitae, 2019, 49(10): 1185-1212. (in Chinese with English abstract)
doi: 10.1360/SSV-2019-0209
[3]   CHEN X B, ZHANG Z L, LIU D M, et al. SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development[J]. Journal of Integrative Plant Biology, 2010, 52(11): 946-951. DOI: 10.1111/j.1744-7909.2010.00987.x
doi: 10.1111/j.1744-7909.2010.00987.x
[4]   LAN T, ZHENG Y L, SU Z L, et al. OsSPL10, a SBP-box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. Genes, Genomes, Genetics (G3), 2019, 9(12): 4107-4114. DOI: 10.1534/g3.119.400700
doi: 10.1534/g3.119.400700
[5]   LEE J W, PARK J J, KIM S L, et al. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint[J]. Plant Molecular Biology, 2007, 65(4): 487-499. DOI: 10.1007/s11103-007-9196-1
doi: 10.1007/s11103-007-9196-1
[6]   YANG R X, LI P C, MEI H L, et al. Fine-tuning of MiR528 accumulation modulates flowering time in rice[J]. Molecular Plant, 2019, 12(8): 1103-1113. DOI: 10.1016/j.molp.2019.04.009
doi: 10.1016/j.molp.2019.04.009
[7]   SI L Z, CHEN J Y, HUANG X H, et al. OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4): 447-456. DOI: 10.1038/ng.3518
doi: 10.1038/ng.3518
[8]   WANG S K, WU K, YUAN Q B, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8): 950-954. DOI: 10.1038/ng.2327
doi: 10.1038/ng.2327
[9]   WANG S K, LI S, LIU Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics, 2015, 47(8): 949-954. DOI: 10.1038/ng.3352
doi: 10.1038/ng.3352
[10]   YUAN H, QIN P, HU L, et al. OsSPL18 controls grain weight and grain number in rice[J]. Journal of Genetics and Genomics, 2019, 46(1): 41-51. DOI: 10.1016/j.jgg.2019.01.003
doi: 10.1016/j.jgg.2019.01.003
[11]   HUANG X Z, QIAN Q, LIU Z B, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. DOI: 10.1038/ng.352
doi: 10.1038/ng.352
[12]   SHAO Y L, ZHOU H Z, WU Y R, et al. OsSPL3, an SBP-domain protein, regulates crown root development in rice[J]. The Plant Cell, 2019, 31(6): 1257-1275. DOI: 10.1105/tpc.19.00038
doi: 10.1105/tpc.19.00038
[13]   ZHOU M Q, TANG W. MicroRNA156 amplifies transcription factor-associated cold stress tolerance in plant cells[J]. Molecular Genetics and Genomics, 2019, 294(2): 379-393. DOI: 10.1007/s00438-018-1516-4
doi: 10.1007/s00438-018-1516-4
[14]   BIRKENBIHL R P, JACH G D, SAEDLER H, et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains[J]. Journal of Molecular Biology, 2005, 352(3): 585-596. DOI: 10.1016/j.jmb.2005.07.013
doi: 10.1016/j.jmb.2005.07.013
[15]   SHALOM L, SHLIZERMAN L, ZUR N, et al. Molecular characterization of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL)gene family from Citrus and the effect of fruit load on their expression[J]. Frontier in Plant Science, 2015, 6: 389. DOI: 10.3389/fpls.2015.00389
doi: 10.3389/fpls.2015.00389
[16]   NANDA S, HUSSAIN S. Genome-wide identification of the SPL gene family in Dichanthelium oligosanthes [J]. Bioinfor-mation, 2019, 15(3): 165-171. DOI: 10.6026/97320630015165
doi: 10.6026/97320630015165
[17]   XIONG J S, ZHENG D, ZHU H Y, et al. Genome-wide identification and expression analysis of the SPL gene family in woodland strawberry Fragaria vesca [J]. Genome, 2018, 61(9): 675-683. DOI: 10.1139/gen-2018-0014
doi: 10.1139/gen-2018-0014
[18]   CAI C P, GUO W Z, ZHANG B H. Genome-wide identification and characterization of SPL transcription factor family and their evolution and expression profiling analysis in cotton[J]. Scientific Reports, 2018, 8(1): 762. DOI: 10.1038/s41598-017-18673-4
doi: 10.1038/s41598-017-18673-4
[19]   LI J, HOU H M, LI X Q, et al. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus×domestica Borkh.)[J]. Plant Physiology and Biochemistry, 2013, 70: 100-114. DOI: 10.1016/j.plaphy.2013.05.021
doi: 10.1016/j.plaphy.2013.05.021
[20]   PAN F, WANG Y, LIU H L, et al. Genome-wide identification and expression analysis of SBP-like transcription factor genes in moso bamboo (Phyllostachys edulis)[J]. BMC Genomics, 2017, 18: 486. DOI: 10.1186/s12864-017-3882-4
doi: 10.1186/s12864-017-3882-4
[21]   ZHANG B, XU W N, LIU X, et al. Functional conservation and divergence among homoeologs of TaSPL20 and TaSPL21, two SBP-box genes governing yield-related traits in hexaploid wheat[J]. Plant Physiology, 2017, 174(2): 1177-1191. DOI: 10.1104/pp.17.00113
doi: 10.1104/pp.17.00113
[22]   LI L, SHI F, WANG Y Q, et al. TaSPL13 regulates inflorescence architecture and development in transgenic wheat (Triticum aestivum L.)[J]. Plant Science, 2020, 296: 110516. DOI: 10.1016/j.plantscience.2020.110516
doi: 10.1016/j.plantscience.2020.110516
[23]   TRIPATHI R K, BREGITZER P, SINGH J. Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley[J]. Scientific Reports, 2018, 8(1): 7085. DOI: 10.1038/s41598-018-25349-0
doi: 10.1038/s41598-018-25349-0
[24]   LI S K, LI L, JIANG Y, et al. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family: transcriptome-wide identification, phylogenetic relationship, expression patterns and network interaction analysis in Panax ginseng C. A. Meyer[J]. Plants, 2020, 9(3): 354. DOI: 10.3390/plants9030354
doi: 10.3390/plants9030354
[25]   PRESTON J C, JORGENSEN S A, OROZCO R, et al. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia[J]. Planta, 2016, 243(2): 429-440. DOI: 10.1007/s00425-015-2413-2
doi: 10.1007/s00425-015-2413-2
[26]   BRAY E A. Molecular responses to water deficit[J]. Plant Physiology, 1993, 103(4): 1035-1040. DOI: 10.1104/pp.103.4.1035
doi: 10.1104/pp.103.4.1035
[27]   YUE B, XUE W Y, XIONG L Z, et al. Genetic basis of drought resistance at reproductive stage in rice: separation of drought tolerance from drought avoidance[J]. Genetics, 2006, 172(2): 1213-1228. DOI: 10.1534/genetics.105.045062
doi: 10.1534/genetics.105.045062
[1] Attached Fig. S1 Download
[1] Ye HONG,Guoping ZHANG. Influence of drought stress during the grain-filling stage on malt main quality traits of barley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 135-140.
[2] Ren ZHOU,Yu CAI,Tianyi LIN,Mingliang CHAI. Effects of melatonin and epibrassinolide on the regeneration of long-term subcultured callus of Zoysia matrella (L.) Merr. under simulated drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 36-44.
[3] Bei HUANG,Peng WANG,Mingxia WEN,Shaohui WU,Jianguo XU. Effects of different degrees of drought stress on plants and flowering physiology in Satsuma mandarin (Citrus unshiu Yura)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 557-565.
[4] Hao ZHENG,Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG,Dawei XUE. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 8-13.
[5] Xiaoyue GAO,Bin DONG,Chao ZHANG,Jianxin FU,Shaoqing HU,Hongbo ZHAO,Lijun LIANG. Cloning and activity analysis of promoters of expansin genes OfEXPA2, OfEXPA4 and OfEXLA1 from Osmanthus fragrans[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 23-29.
[6] SHAO Shanlu, YANG Lizhi, TAO Chenyue, HE Anguo, YING Yeqing. Effects and mechanism of paclobutrazol on drought resistance of Phyllostachys edulis seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 565-572.
[7] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[8] LUO Jun, LIU Hehe, LIU Junying, ZHANG Tao, WANG Yushi, HAN Chunchun . Molecular cloning, bioinformatics of the duck RIG-1 promoter region, and its differential expression profiles in embryo stages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 104-112.
[9] XIN Fumei, JIA Liming, YANG Xiaolin, ZANG Jiancheng. Effects of drought stress on characteristics of water consumption and photosynthesis of the main shrub species in Lhasa semi-arid valley[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 617-.
[10] XIN Fumei, YANG Xiaolin, ZHAO Kentian, Luosangzhuoma. Effect of drought stress on characteristics of water consumption and photosynthesis for main arbor species in semi-arid valley of Lhasa.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 199-208.
[11] ZHONG Lei, DENG Juncai, WANG Liangjun, YUAN Jichao, ZHENG Shunlin. Effects of different growth regulators on germination and main carbon-nitrogen metabolites contents during the storage period of potato tuber[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 81-88.
[12] XU Qinglong, LIU Xiaomin, XU Xiaobing, LI Qingqing, ZHANG Hong, XIAO Jiaxin. Effects of four arbuscular mycorrhizal fungi on tolerance of Vaccinium corymbosum to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 427-434.
[13] Guan Xiaoyan, Chen Lifei, He Yanjun, Wang Jie, Lu Gang*. Subcellular localization and tissue expression pattern of SlMAPK7 gene in tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(6): 598-604.
[14] . Effects of drought stress on leaf photosynthetic physiological charateristics in sweet cherry seedlings grafted on four different rootstocks[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(5): 585-592.