Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (4): 507-516    DOI: 10.3785/j.issn.1008-9209.2020.10.161
Resource utilization & environmental protection     
Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application
Yixin WU(),Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG()
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(910KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A field experiment was carried out on ‘Zheyou 21’ rice cultivar, and the effects of topdressing of silicon (Si) fertilizer on stress resistance and yield of rice were studied at two levels of pesticide application. The normal level of pesticide application (375 g/hm2 75% tricyclazole wettable powder, D1) and the reduced level of pesticide application (225 g/hm2 75% tricyclazole wettable powder, D2) were set up. Each level of pesticide application contained two Si fertilizer treatments, including non-topdressing of Si fertilizer (-Si) and topdressing of Si powder fertilizer (750 kg/hm2, +Si). The results showed that compared with -Si, the +Si increased the breaking resistance of the second stem by 26.71%, and reduced the lodging index by 13.29%, incidence of rice ear neck blast by 15.37%, disease index by 19.09%, and increased yield by 3.33% (P<0.05) of rice under the treatment of D1. Compared with -Si, the +Si increased the breaking resistance of the second stem by 33.67%, and reduced lodging index by 14.04%, incidence of rice ear neck blast by 28.98%, disease index by 23.11%, and increased yield by 11.44% (P<0.05) of rice under the treatment of D2. In conclusion, topdressing of Si fertilizer could reduce lodging index and disease index of rice ear neck blast, leading to enhance lodging resistance and disease resistance to rice ear neck blast, and increase rice yield under the reduced level of pesticide application. In the case of no Si topdressing, rice yield was reduced due to the reduction in pesticide application, while in the case of Si topdressing, there is no significant effect on rice yield.



Key wordssilicon fertilizer      pesticide reduction      lodging index      rice ear neck blast      yield     
Received: 16 October 2020      Published: 02 September 2021
CLC:  S 143.79  
Corresponding Authors: Hongyun PENG     E-mail: Yixwu@zju.edu.cn;penghongyun@zju.edu.cn
Cite this article:

Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.161     OR     http://www.zjujournals.com/agr/Y2021/V47/I4/507


农药减施条件下追施硅肥对水稻抗逆性及产量的影响

以‘浙优21’水稻品种为材料进行田间试验,设置正常施药(375 g/hm2 75%三环唑可湿性粉剂,D1)和减药(225 g/hm2 75%三环唑可湿性粉剂,D2)2种施药水平,每种施药水平含追施硅肥(750 kg/hm2,+Si)组和不追施硅肥(-Si)组,共4个处理组,研究在这2种施药水平下追施硅肥对水稻抗逆性及产量的影响。结果表明:在正常施药水平(D1)下,相较于不追施硅肥,追施硅肥的水稻基部第2节抗折力增大26.71%,倒伏指数降低13.29%,水稻穗颈瘟发病率降低15.37%,病情指数降低19.09%,水稻产量提高3.33%(P<0.05);在减药水平(D2)下,相较于不追施硅肥,追施硅肥的水稻基部第2节抗折力增大33.67%,倒伏指数降低14.04%,水稻穗颈瘟发病率降低28.98%,病情指数降低23.11%,水稻产量提高11.44%(P<0.05)。由此说明,在农药减施条件下,追施硅肥能降低水稻的倒伏指数和水稻穗颈瘟病情指数,增强水稻抗倒伏能力和抗水稻穗颈瘟能力,提高水稻产量。在不施硅肥情况下,减药使水稻减产;而在施硅肥情况下,减药与否对水稻产量无显著影响。


关键词: 硅肥,  农药减施,  倒伏指数,  水稻穗颈瘟,  产量 

处理

Treatment

基肥

Base fertilizer/(kg/hm2)

追肥

Topdressing/(kg/hm2)

施药

Pesticide application/(g/hm2)

拔节期

Elongation stage

孕穗期

Booting stage

齐穗期

Full heading stage

D1-Si750075150150
+Si75075075150150
D2-Si7500751500
+Si750750751500
Table 1 Details of fertilization and pesticide application in each treatment
Fig. 1 Effects of topdressing of Si fertilizer on the plant height, the second stem base width and the second stem wall thickness of ricePlease see the footnote of Table 1 for the details of each treatment symbol. Different lowercase letters above bars indicate significant differences at the same pesticide application level at the 0.05 probability level.
Fig. 2 Effects of topdressing of Si fertilizer on the second stem breaking resistance and the lodging index of ricePlease see the footnote of Table 1 for the details of each treatment symbol. Different lowercase letters above bars indicate significant differences at the 0.05 probability level.

处理

Treatment

发病率

Incidence/%

病情指数

Disease index

防治效果

Control effect/%

D1-Si19.72±0.08b12.26±0.06b0.00
+Si16.69±0.10c9.92±0.21d19.11
D2-Si23.26±0.25a13.89±0.06a-13.29
+Si16.52±0.04c10.68±0.13c12.88
Table 2 Incidence of rice ear neck blast under each treatment

处理

Treatment

有效穗数

Effective

panicle/(104 hm-2)

每穗粒数

Grain number

per panicle

每穗实粒数

Filled grain

number per panicle

结实率

Seed setting

rate/%

千粒质量

1 000-grain

mass/g

理论产量

Theoretical yield/

(kg/hm2)

实际产量

Actual yield/

(kg/hm2)

D1-Si194.70±1.65b285.83±1.59b247.47±1.51b86.58±0.05b23.25±0.02b11 202.15±167.21b12 196.65±126.66b
+Si209.71±1.14a300.02±2.85a261.20±2.45a87.06±0.01a23.37±0.01a12 798.99±112.57a12 602.30±98.77a
D2-Si185.97±1.72c277.99±1.40c236.76±1.20c85.17±0.19c23.24±0.01b10 229.92±51.92c11 299.20±79.04c
+Si206.95±0.64a297.87±0.80a258.85±0.65a86.90±0.03ab23.35±0.01a12 506.51±57.46a12 591.65±70.96a
Table 3 Rice yield and its composition under each treatment

处理

Treatment

总氮 Total N总磷 Total P总钾 Total KSi
秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed秸秆 Straw籽粒 Seed
D1-Si7.97±0.08a14.88±0.04b1.41±0.04b2.79±0.02b34.08±0.50a4.22±0.12a76.80±0.08b34.80±0.15b
+Si7.60±0.05b15.73±0.37a1.60±0.04a3.16±0.04a31.87±0.70a4.37±0.12a86.94±0.45a41.29±0.04a
D2-Si7.92±0.07a14.82±0.03b1.43±0.01b2.81±0.02b33.55±0.69a4.36±0.10a77.71±0.33b35.06±0.19b
+Si7.68±0.06b15.89±0.14a1.58±0.01a3.09±0.02a32.07±0.82a4.46±0.15a87.13±0.39a41.19±0.09a
Table 4 Element contents of rice straw and seed under each treatment

参量

Parameter

产量

Yield

病情指数Disease

index

倒伏指数Lodging

index

株高

Plant

height

茎基宽

Stem

base width

茎壁厚Stem wall

thickness

秸秆 Straw籽粒 Seed

总氮

Total N

总磷

Total P

总钾

Total K

Si

总氮

Total N

总磷

Total P

总钾

Total K

Si
产量 Yield1
病情指数 Disease index-0.934**1
倒伏指数 Lodging index-0.825**0.940**1
株高 Plant height0.254-0.417-0.4631
茎基宽 Stem base width0.848**-0.902**-0.881**0.2511
茎壁厚 Stem wall thickness0.803**-0.929**-0.959**0.5440.783**1
秸秆Straw总氮 Total N-0.590*0.722**0.823**-0.237-0.710**-0.783**1
总磷 Total P0.680*-0.833**-0.875**0.623*0.684*0.889**-0.650*1
总钾 Total K-0.5230.610*0.702*-0.446-0.337-0.735**0.564-0.706*1
Si0.740**-0.871**-0.970**0.4190.831**0.918**-0.821**0.912**-0.704*1
籽粒Seed总氮 Total N0.664*-0.771**-0.811**0.2580.797**0.777**-0.719**0.724**-0.5020.825**1
总磷 Total P0.713**-0.867**-0.958**0.3790.785**0.914**-0.878**0.867**-0.741**0.969**0.750**1
总钾 Total K-0.016-0.159-0.2600.3710.1660.381-0.2650.2550.0380.2750.3960.2321
Si0.760**-0.893**-0.983**0.4200.850**0.944**-0.819**0.894**-0.701*0.992**0.853**0.961**0.3211
Table 5 Correlation relationships among rice disease index, lodging index, stem shape, nutrient content and rice yield
[1]   XIAO S Z, WANG B X, LIU Y Q, et al. Genome-wide association study and linkage analysis on resistance to rice black-streaked dwarf virus disease. Molecular Breeding, 2019,39:73. DOI:10.1007/s11032-019-0980-9
doi: 10.1007/s11032-019-0980-9
[2]   LUO Y C, MA T C, ZHANG A F, et al. Marker-assisted breeding of Chinese elite rice cultivar 9311 for disease resistance to rice blast and bacterial blight and tolerance to submergence. Molecular Breeding, 2017,37:106. DOI:10.1007/s11032-017-0695-8
doi: 10.1007/s11032-017-0695-8
[3]   GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Molecular Plant Pathology, 2018,19(9):2149-2161. DOI:10.1111/mpp.12689
doi: 10.1111/mpp.12689
[4]   SAVARY S, WILLOCQUET L, ELAZEGUI F A, et al. Rice pest constraints in tropical Asia: quantification of yield losses due to rice pests in a range of production situations. Plant Disease, 2000,84(3):357-369. DOI:10.1094/pdis.2000.84.3.357
doi: 10.1094/pdis.2000.84.3.357
[5]   VAEZI A, FAKHIM H, JAVIDNIA J, et al. Pesticide behavior in paddy fields and development of azole-resistant Aspergillus fumigatus: Should we be concerned?Journal de Mycologie Médicale, 2018,28(1):59-64. DOI:10.1016/j.mycmed.2017.12.007
doi: 10.1016/j.mycmed.2017.12.007
[6]   MOUHAMADOU C S, DE SOUZA S S, FODJO B K, et al. Evidence of insecticide resistance selection in wild Anopheles coluzzii mosquitoes due to agricultural pesticide use. Infectious Diseases of Poverty, 2019,8(1):64. DOI:10.1186/s40249-019-0572-2
doi: 10.1186/s40249-019-0572-2
[7]   LI Z J. Evaluation of regulatory variation and theoretical health risk for pesticide maximum residue limits in food. Journal of Environmental Management, 2018,219:153-167. DOI:10.1016/j.jenvman.2018.04.067
doi: 10.1016/j.jenvman.2018.04.067
[8]   KUMARI D, JOHN S. Health risk assessment of pesticide residues in fruits and vegetables from farms and markets of Western Indian Himalayan region. Chemosphere, 2019,224:162-167. DOI:10.1016/j.chemosphere.2019.02.091
doi: 10.1016/j.chemosphere.2019.02.091
[9]   Silicon EPSTEIN E.. Annual Review of Plant Physiology and Plant Molecular Biology, 1999,50:641-664.
[10]   MA J F, Soil TAKAHASHI E., Fertilizer, and Plant Silicon Research in Japan. Amsterdam, the Netherlands: Elsevier Science, 2002:257-274. DOI:10.1016/B978-0-444-51166-9.X5000-3
doi: 10.1016/B978-0-444-51166-9.X5000-3
[11]   LIANG Y C, NIKOLIC M, BéLANGER R, et al. Effect of silicon on crop growth, yield and quality//Silicon in Agriculture. Dordrecht, the Netherlands: Springer, 2015:209-223. DOI:10.1007/978-94-017-9978-2_11
doi: 10.1007/978-94-017-9978-2_11
[12]   SAVANT N K, SNYDER G H, DATNOFF L E. Silicon management and sustainable rice production. Advances in Agronomy, 1996,58:151-199. DOI:10.1016/S0065-2113(08)60255-2
doi: 10.1016/S0065-2113(08)60255-2
[13]   MA J F, YAMAJI N. Silicon uptake and accumulation in higher plants. Trends in Plant Science, 2006,11(8):392-397. DOI:10.1016/j.tplants.2006.06.007
doi: 10.1016/j.tplants.2006.06.007
[14]   SEEBOLD K W, DATNOFF L E, CORREA-VICTORIA F J, et al. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Disease, 2000,84(8):871-876. DOI:10.1094/pdis.2000.84.8.871
doi: 10.1094/pdis.2000.84.8.871
[15]   SEEBOLD K W, KUCHAREK T A, DATNOFF L E, et al. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology, 2001,91(1):63-69. DOI:10.1094/PHYTO.2001.91.1.63
doi: 10.1094/PHYTO.2001.91.1.63
[16]   HAYASAKA T, FUJII H, NAMAI T. Silicon content in rice seedlings to protect rice fungus at the nursery stage. Journal of General Plant Pathology, 2005,71(3):169-173. DOI:10.1007/s10327-005-0182-7
doi: 10
[17]   RODRIGUES F á, DATNOFF L E, KORND?RFER G H, et al. Effect of silicon and host resistance on sheath blight development in rice. Plant Disease, 2001,85(8):827-832. DOI:10.1094/pdis.2001.85.8.827
doi: 10.1094/pdis.2001.85.8.827
[18]   RODRIGUES F á, VALE F X R, KORND?RFER G H, et al. Influence of silicon on sheath blight of rice in Brazil. Crop Protection, 2003,22(1):23-29. DOI:10.1016/S0261-2194(02)00084-4
doi: 10.1016/S0261-2194(02)00084-4
[19]   RANGANATHAN S, SUVARCHALA V, RAJESH Y B R D, et al. Effect of silicon sources on its deposition, chlorophyll content, and disease and pest resistance in rice. Biologia Plantarum, 2006,50(4):713-716. DOI:10.1007/s10535-006-0113-2
doi: 10.1007/s10535-006-0113-2
[20]   刘红芳,宋阿琳,范分良,等.高供氮水平下不同硅肥对水稻茎秆特征的影响.植物营养与肥料学报,2018,24(3):758-768. DOI:10.11674/zwyf.17485
LIU H F, SONG A L, FAN F L, et al. Characteristics of rice stem in response to different silicon fertilizers under high nitrogen supply level. Plant Nutrition and Fertilizer Science, 2018,24(3):758-768. (in Chinese with English abstract)
doi: 10.11674/zwyf.17485
[21]   陈刚,罗志祥,施伏芝,等.一种新型硅肥在两系杂交水稻上的增产效果研究.中国土壤与肥料,2016(2):109-113. DOI:10.11838/sfsc.20160220
CHEN G, LUO Z X, SHI F Z, et al. Effect of a new type silicon fertilizer application on yield of two-lines hybrid rice. Soil and Fertilizer Sciences in China, 2016(2):109-113. (in Chinese with English abstract)
doi: 10.11838/sfsc.20160220
[22]   崛内久满,古贺义昭.水稻抗倒伏性与育种.农业技术,1989,44(9):41-45.
JUENEIJIUMAN, GUHEYIZHAO. Lodging resistance of rice and breeding. Agricultural Technology, 1989,44(9):41-45. (in Chinese)
[23]   中华人民共和国农业部.稻瘟病测报调查规范:GB/T 15790—2009.北京:中国标准出版社,2009.
Ministry of Agriculture of the People’s Republic of China. Rules for Investigation and Forecast of the Rice Blast [Pyricularia oryzae (Cavara)]: GB/T 15790—2009. Beijing: Standards Press of China, 2009. (in Chinese)
[24]   鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
LU R K. Soil and Agricultural Chemistry Analysis Method. Beijing: China Agricultural Science and Technology Press, 1999. (in Chinese)
[25]   戴伟民,张克勤,段彬伍,等.测定水稻硅含量的一种简易方法.中国水稻科学,2005,19(5):460-462.
DAI W M, ZHANG K Q, DUAN B W, et al. Rapid determination of silicon content in rice (Oryza sativa). Chinese Journal of Rice Science, 2005,19(5):460-462. (in Chinese with English abstract)
[26]   张晶,石扬娟,任洁,等.硅肥用量对水稻茎秆抗折力的影响研究.中国农学通报,2014,30(3):49-55.
ZHANG J, SHI Y J, REN J, et al. The effect of silicon fertilizer on flexural strength of rice culm. Chinese Agricultural Science Bulletin, 2014,30(3):49-55. (in Chinese with English abstract)
[27]   范永义,杨国涛,陈敬,等.硅钾肥配施对水稻茎秆理化性状及抗倒伏能力的影响.西北植物学报,2017,37(4):751-757. DOI:10.7606/j.issn.1000-4025.2017.04.0751
FAN Y Y, YANG G T, CHEN J, et al. The physical, chemical characters and lodging resistance of rice stem with silicon potassium collocation application. Acta Botanica Boreali-Occidentalia Sinica, 2017,37(4):751-757. (in Chinese with English abstract)
doi: 10.7606/j.issn.1000-4025.2017.04.0751
[28]   梁社坚,李增奇,李晓娟,等.水稻茎秆性状和硅含量对抗压强度的影响//广东省植物学会2010学术研讨会论文集.广州:广东省植物学会,2010.
LIANG S J, LI Z Q, LI X J, et al. Effects of stem structural characters and silicon contents on bending strength in rice//Proceedings of the 2010 Symposium of Guangdong Society of Botany. Guangzhou: Guangdong Society of Botany, 2010. (in Chinese with English abstract)
[29]   何巧林,张绍文,李应洪,等.硅钾配施对水稻茎秆性状和抗倒伏能力的影响.杂交水稻,2017,32(1):66-73. DOI:10.16267/j.cnki.1005-3956.201701019
HE Q L, ZHANG S W, LI Y H, et al. Effects of silicon and potassium fertilizer combination on stem traits and lodging resistance of rice. Hybrid Rice, 2017,32(1):66-73. (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201701019
[30]   关玉萍,沈枫.水稻抗倒伏能力与茎秆物理性状的关系及对产量的影响.吉林农业科学,2004,29(4):6-11. DOI:10.3969/j.issn.1003-8701.2004.04.002
GUAN Y P, SHEN F. Effect of lodging resistance on yield of rice and its relationship with stalk physical characteristics. Journal of Jilin Agricultural Sciences, 2004,29(4):6-11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-8701.2004.04.002
[31]   李荣田,姜廷波,秋太权,等.水稻倒伏对产量影响及倒伏和株高关系的研究.黑龙江农业科学,1996(1):13-17.
LI R T, JIANG T B, QIU T Q, et al. Study on effect of lodging to yield and relationship between lodging and plant height in rice. Heilongjiang Agricultural Sciences, 1996(1):13-17. (in Chinese with English abstract)
[32]   李国辉,钟旭华,田卡,等.施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理.中国农业科学,2013,46(7):1323-1334. DOI:10.3864/j.issn.0578-1752.2013.07.003
LI G H, ZHONG X H, TIAN K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms. Scientia Agri-cultura Sinica, 2013,46(7):1323-1334. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.07.003
[33]   杨艳华,朱镇,张亚东,等.水稻不同生育期茎秆生化成分的变化及其与抗倒伏能力的关系.植物生理学报,2011,47(12):1181-1187.
YANG Y H, ZHU Z, ZHANG Y D, et al. Changes of stem biochemical components in different growth stages of rice and their relationship with lodging resistance. Plant Physiology Journal, 2011,47(12):1181-1187. (in Chinese with English abstract)
[34]   水茂兴,杜新法,陈德富,等.高效硅肥对水稻抗稻瘟病效果分析.浙江农业学报,1995,7(4):289-292.
SHUI M X, DU X F, CHEN D F, et al. Effect of soluble silicon fertilizer on rice resistance to blast. Acta Agriculturae Zhejiangensis, 1995,7(4):289-292. (in Chinese with English abstract)
[35]   雷雨,黄云,杜哓宇,等.增施硅肥对水稻抗稻瘟病的效果分析.安徽农业科学,2009,37(23):11044-11046. DOI:10.3969/j.issn.0517-6611.2009.23.093
LEI Y, HUANG Y, DU X Y, et al. Effect analysis of adding silicon fertilizer on the resistance of rice to rice blast. Journal of Anhui Agricultural Sciences, 2009,37(23):11044-11046. (in Chinese with English abstract)
doi: 10.3969/j.issn.0517-6611.2009.23.093
[36]   赖添奎,邓裕娴,葛少彬,等.施用硅肥对水稻稻瘟病、生长及产量的影响.热带农业工程,2012,36(2):6-8.
LAI T K, DENG Y X, GE S B, et al. Effects of silicon fertilizer on rice blast control, rice growth and yield. Tropical Agricultural Engineering, 2012,36(2):6-8. (in Chinese with English abstract)
[37]   张佑宏,张国斌,王治虎,等.施用硅肥锌肥作基肥对稻瘟病发生的影响.中国农学通报,2018,34(8):90-94. DOI:10.11924/j.issn.1000-6850.casb17090039
ZHANG Y H, ZHANG G B, WANG Z H, et al. Silicon fertilizer and zinc fertilizer as base fertilizer: effect on Magnaporthe oryzae. Chinese Agricultural Science Bulletin, 2018,34(8):90-94. (in Chinese with English abstract)
doi: 10.11924/j.issn.1000-6850.casb17090039
[38]   NANDA H P, GANGOPADHYAY S. Role of silicated cells in rice leaf on brown spot disease incidence by Bipolaris oryzae. International Journal of Tropical Plant Diseases, 1984,2(2):89-98.
[39]   HAYASAKA T, FUJII H, ISHIGURO K. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology, 2008,98(9):1038-1044. DOI:10.1094/PHYTO-98-9-1038
doi: 10.1094/PHYTO-98-9-1038
[40]   SUN W C, ZHANG J, FAN Q H, et al. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. European Journal of Plant Pathology, 2010,128(1):39-49. DOI:10.1007/s10658-010-9625-x
doi: 10.1007/s10658-010-9625-x
[41]   RODRIGUES F A, JURICK W M, DATNOFF L E, et al. Silicon influences cytological and molecular events in compatible and incompatible rice-Magnaporthe grisea interactions. Physiological and Molecular Plant Pathology, 2005,66(4):144-159. DOI: 10.1016/j.pmpp.2005.06.002
doi: 10.1016/j.pmpp.2005.06.002
[42]   BRUNINGS A M, DATNOFF L E, MA J F, et al. Differential gene expression of rice in response to silicon and rice blast fungus Magnaporthe oryzae. Annals of Applied Biology, 2009,155(2):161-170. DOI:10.1111/j.1744-7348.2009.00347.x
doi: 10.1111/j.1744-7348.2009.00347.x
[43]   张翠珍,邵长泉,孟凯,等.水稻吸硅特点及硅肥效应研究.莱阳农学院学报,2003,20(2):111-113. DOI:10.3969/j.issn.1674-148X.2003.02.011
ZHANG C Z, SHAO C Q, MENG K, et al. Study on rice absorbing silicon characteristics and silica fertilizer effect under salinized moist in coastal regions. Journal of Laiyang Agricultural College, 2003,20(2):111-113. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-148X.2003.02.011
[44]   吴巍,张宽,王秀芳,等.硅肥对水稻养分吸收及产量的影响.吉林农业科学,1996(3):51-54.
WU W, ZHANG K, WANG X F, et al. A study of silicon fertilizer on nutrient uptake and yield in rice. Journal of Jilin Agricultural Sciences, 1996(3):51-54. (in Chinese with English abstract)
[45]   唐旭,郑毅,汤利,等.不同品种间作条件下的氮硅营养对水稻稻瘟病发生的影响.中国水稻科学,2006,20(6):663-666.
TANG X, ZHENG Y, TANG L, et al. Effects of nitrogen and silicon nutrition on rice blast occurrence under intercropping with different type varieties. Chinese Journal of Rice Science, 2006,20(6):663-666. (in Chinese with English abstract)
[46]   INANAGA S, HIGUCHI Y, CHISHAKI N. Effect of silicon application on reproductive growth of rice plant. Soil Science and Plant Nutrition, 2002,48(3):341-345. DOI:10.1080/00380768.2002.10409210
doi: 10.1080/0038
[47]   胡瑞芝,方水娇,陈桂秋.硅对杂交水稻生理指标及产量的影响.湖南农业大学学报(自然科学版),2001,27(5):335-338.
HU R Z, FANG S J, CHEN G Q. Effects of silicon on the physiological targets and yield of hybrid rice. Journal of Hunan Agricultural University (Natural Sciences), 2001,27(5):335-338. (in Chinese with English abstract)
[48]   ALVAREZ J, DATNOFF L E. The economic potential of silicon for integrated management and sustainable rice production. Crop Protection, 2001,20(1):43-48. DOI:10.1016/s0261-2194(00)00051-x
doi: 10.1016/s0261-2194(00)00051-x
[49]   杨楠.硅肥对水稻产量构成因素的影响.现代化农业,2014(2):15-16.
YANG N. Effect of silicon fertilizer on yield components of rice. Modernizing Agriculture, 2014(2):15-16. (in Chinese)
[50]   李卫国.硅肥对水稻产量及其构成因素的影响.山西农业科学,2002,30(4):42-44. DOI:10.3969/j.issn.1002-2481.2002.04.009
LI W G. Effects of Si fertilization on rice yield and component factors. Journal of Shanxi Agricultural Sciences, 2002,30(4):42-44. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-2481.2002.04.009
[1] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[2] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[3] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[4] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[5] Lai WEI,Mingyan YU,Nannan QIN,Chongping HUANG,Ying XIE,Wenbo SUN,Liehong WU,Weizhong WANG,Guoxin WANG. Effects of agro-photovoltaic integrating system on field illumination and sweet potato growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 288-295.
[6] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[7] JIANG Jingjing, CHANG Xiaoxiao, HU Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 678-686.
[8] XIANG Jie, WANG Fuqiang, GUO Baoguang, WANG Qinggang, YU Chengqun, SHEN Zhenxi, SHAO Xiaoming. Effects of mixtures and intercropping of common vetch and oat in valley area of Tibet on the yield and quality[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 555-564.
[9] WANG Guiyue, ZHAO Fucheng, HAN Hailiang, BAO Fei, TAN Heping, YU Qiying. Analysis of yield, quality and resistance of fresh maize cultivars in Zhejiang Province and corresponding breeding objectives[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 343-355.
[10] PU Shilin, DENG Fei, HU Hui, ZHONG Xiaoyuan, WANG Li, LI Wu, LI Shuxian, LIAO Shuang, REN Wanjun. Effects of different hill spacings and seedling numbers per hill on dry matter production and yield of machine-transplanting hybrid rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 21-30.
[11] PANG Ting, SHUAI Peng, CHEN Ping, DU Qing, FU Zhidan, YANG Wenyu, YONG Taiwen. Effects of different nodulation varieties and row spacings on nodule growth, dry matter accumulation and distribution of relay strip intercropping soybean[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 451-461.
[12] WEI Changhui, LIU Yajun, YE Xiuxiang, LI Yue, MA Kun. Effects of intercropping potato with maize on soil and crop.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 54-64.
[13] ZHOU Xuan, DING Junshan, WU Lianghuan, LU Ruohui, YANG Guobiao, WANG Xu. Effects of compound fertilizers by different processes on yield and yield quality of pakchoi (Brassica chinensis L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 626-.
[14] LI Min, LUO Deqiang, JIANG Xuehai, ZHOU Weijia, GI Guangmei, WANG Xuehong, LI Shuxing . Ecological adaptability of rice cultivars with different types under the low temperature and weak sunshine condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 47-52.
[15] LAN Yan, HUANG Peng, JIANG Guchihong, LEI Xiaobo, DING Chunbang, LI Tian. Effect of nitrogen application and planting density on grain yield and quality of japonica rice cultivar D46 in the planting area of Chengdu plain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 63-73.