Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 376-388    DOI: 10.3785/j.issn.1008-9209.2022.05.181
Resource utilization & environmental protection     
Effects of deoxymugineic acid from rice root exudates on bacterial community composition in rhizosphere and root endosphere
Linze YANG1,2(),Huixia SHOU1,2()
1.Hainan Yazhou Bay Seed Laboratory, Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
2.Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(4643KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Under the iron-deficiency condition, roots of graminaceous plants secrete mugineic acids into the soil. To determine the effects of rice root exudate 2-deoxymugineic acid (DMA) on rhizosphere and root endosphere bacterial community, wild type rice named as Nipponbare and osbhlh156 and iro2 mutant rices that loss the ability to secrete DMA were used as experimental materials in this study. The rhizosphere and root endosphere microorganisms were sampled for DNA extraction and 16S rRNA gene amplicon sequencing and data analysis. The results showed that soil types and cultivation conditions had significant impacts on rhizosphere and root endosphere bacterial community composition. In contrast, the root exudate DMA had relatively less impact, but not negligible. The bacterial species and diversity decreased from rhizosphere to root endosphere, which confirmed that the root endosphere bacteria were gradually selected and colonized inside root by interacting with plants. Nine microbial taxa, including Bradyrhizobium and Dictyobacter, etc., were selected as biomarkers, to distinguish whether there is DMA secretion in the rice rhizosphere. Through functional prediction, it was found that the bacterial taxa with adenosine triphosphate-binding cassette (ABC) transporter function may be involved in plant iron transport and related function. This study clarifies the effects of DMA on the composition of rhizosphere and root endosphere bacterial community of rice and provides data support for the comprehensive analysis of the role of microorganisms in response to iron deficiency in rice.



Key wordsrice      iron deficiency      deoxymugineic acid      rhizosphere      root endosphere      bacterial community     
Received: 18 May 2022      Published: 25 June 2023
CLC:  Q945.15  
Corresponding Authors: Huixia SHOU     E-mail: lefthash_ylz@zju.edu.cn;huixia@zju.edu.cn
Cite this article:

Linze YANG,Huixia SHOU. Effects of deoxymugineic acid from rice root exudates on bacterial community composition in rhizosphere and root endosphere. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 376-388.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.05.181     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/376


水稻根系分泌物脱氧麦根酸对根际和根内细菌群落组成的影响

缺铁条件下禾本科植物根系会向土壤内分泌麦根酸类物质。为明确水稻根系分泌物脱氧麦根酸对根际和根内细菌群落的影响,本研究以野生型水稻日本晴及其无2-脱氧麦根酸(2-deoxymugineic acid, DMA)分泌能力的2个突变体水稻osbhlh156iro2为实验材料,对根际和根内微生物取样后进行DNA提取、16S rRNA基因扩增子测序和数据分析。结果表明:土壤类型和栽培方式显著影响了水稻根际、根内细菌群落的组成,而根系分泌物DMA对细菌群落的影响相对较小;细菌物种数量和多样性从根际到根内逐渐降低,因此根内细菌是在与植物的相互作用下被逐步定殖到根中的;水稻根际有无DMA分泌物可用慢生根瘤菌属(Bradyrhizobium)、火山盘杆菌属(Dictyobacter)等9个微生物类群(生物标志物)进行区分;具有三磷酸腺苷结合盒(adenosine triphosphate-binding cassette, ABC)转运蛋白相关功能的细菌可能参与了植物铁转运过程并行使相关功能。本研究结果明确了DMA对水稻根际和根内细菌群落组成的影响,为全面解析微生物在水稻缺铁响应过程中的作用提供了数据支撑。


关键词: 水稻,  缺铁,  脱氧麦根酸,  根际,  根内,  细菌群落 

参数

Parameter

取样点 Sampling plot

长兴

Changxing

金华

Jinhua

有机质 Organic matter/%2.97±0.192.71±0.11
氮 N/%0.05±0.010.15±0.02
有效磷 Available P/(mg/kg)11.15±0.4946.74±1.50
钾 K/(mg/kg)42.04±6.92355.96±4.60
镁 Mg/(mg/kg)94.44±12.40235.04±3.61
钙 Ca/(mg/kg)289.72±4.31555.02±8.25
锌 Zn/(mg/kg)69.77±2.49109.03±2.67
总铁 Total Fe/(mg/kg)1 637.68±95.293 675.25±129.82
有效铁 Available Fe/(mg/kg)41.54±6.7419.64±4.18
锰 Mn/(mg/kg)943.97±12.392 350.03±13.60
砂粒 Sand/%40.12±0.0231.25±0.02
粉砂粒 Silt/%37.25±0.0238.32±0.03
黏粒 Clay/%22.68±0.0330.48±0.02
pH6.11±0.055.20±0.05
铬 Cr/(mg/kg)34.04±0.1242.31±0.15
镍 Ni/(mg/kg)11.78±0.1015.52±0.20
铜 Cu/(mg/kg)10.20±0.3116.21±0.24
砷 As/(mg/kg)6.00±0.4211.11±0.33
镉 Cd/(mg/kg)0.05±0.010.21±0.01
汞 Hg/(mg/kg)0.05±0.010.08±0.01
铅 Pb/(mg/kg)21.27±1.0936.43±1.31
Table 1 Physical and chemical properties of soils used in the experiment
Fig. 1 Growth performance of wild type and iro2 and osbhlh156 mutant rices under flooded or upland conditionsWT: Wild type (the same as below). Triple asterisks (***) indicate extremely highly significant differences under different cultivation conditions of the same rice cultivar at the 0.001 probability level.
Fig. 2 DMA exudation in root and Fe content of leaf of wild type and iro2 and osbhlh156 mutant ricesIn Fig. A, triple asterisks (***) indicate extremely highly significant differences as compared with WT at the 0.001 probability level, and n=6; In Fig. B, single asterisk (*), double asterisks (**), and triple asterisks (***) indicate significant differences under different cultivation conditions of the same rice cultivar at the 0.05, 0.01, and 0.001 probability levels, respectively, and n=3. Calculated by dry mass.
Fig. 3 Alpha diversity analysis of the bacterial community composition in rhizosphere and root endosphereA. Boxplots of observed OTUs among different treatments; B. Venn diagrams of common and unique OTUs for three genotypes in different soil types. Different lowercase letters above boxes indicate significant differences at the 0.05 probability level.
Fig. 4 Constrained principal coordinate analysis of β diversity based on Bray-Curtis distance among different treatments
Fig. 5 Constrained principal coordinate analysis of β diversity based on Bray-Curtis distance among different genotypes
Fig. 6 Bacterial composition of different treatments at the phylum level (Proteobacteria to class level)A. Rhizosphere; B. Root endosphere.
Fig. 7 Volcano plots of differential OTUs abundance variation analysis between different treatmentsA1. Changxing soil; A2. Jinhua soil; B1. WT in Jinhua soil; B2. iro2 in Jinhua soil; B3. osbhlh156 in Jinhua soil; C1. Rhizosphere in Changxing soil; C2. Root endosphere in Changxing soil; D1. Rhizosphere in Changxing soil. FC: Fold change. Symbols marked as significant decrease and significant enrichment indicate significant differences at the 0.05 probability level and the 0.1 FDR level.
Fig. 8 Functional prediction of rhizosphere and root endosphere bacterial community in WT and iro2 and osbhlh156 mutant rices
[1]   GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3): 815-820.
[2]   KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radical Biology Medicine, 2019, 133: 11-20. DOI: 10.1016/j.freeradbiomed.2018.10.439
doi: 10.1016/j.freeradbiomed.2018.10.439
[3]   MARSCHNER H, RÖMHELD V. Strategies of plants for acquisition of iron[J]. Plant and Soil, 1994, 165: 261-274.
[4]   CURIE C, PANAVIENE Z, LOULERGUE C, et al. Maize yellow stripe1 encodes a membrane protein directly involved in Fe (Ⅲ) uptake[J]. Nature, 2001, 409(6818): 346-349. DOI: 10.1038/35053080
doi: 10.1038/35053080
[5]   TAKEMOTO T, NOMOTO K, FUSHIYA S, et al. Structure of mugineic acid, a new amino-acid possessing an iron-chelating activity from roots washings of water-cultured Hordeum Vulgare L.[J]. Proceedings of the Japan Academy, 1978, 54(B): 469-473.
[6]   MA J F, NOMOTO K. Two related biosynthetic pathways of mugineic acids in gramineous plants[J]. Plant Physiology, 1993, 102(2): 373-378.
[7]   GAO F, DUBOS C. Transcriptional integration of plant responses to iron availability[J]. Journal of Experimental Botany, 2021, 72(6): 2056-2070. DOI: 10.1093/jxb/eraa556
doi: 10.1093/jxb/eraa556
[8]   OGO Y, ITAI R N, INOUE H, et al. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants[J]. Journal of Experimental Botany, 2006, 57(11): 2867-2878. DOI: 10.1093/jxb/erl054
doi: 10.1093/jxb/erl054
[9]   OGO Y, ITAI R N, NAKANISHI H, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions[J]. The Plant Journal, 2007, 51(3): 366-377. DOI: 10.1111/j.1365-313X.2007.03149.x
doi: 10.1111/j.1365-313X.2007.03149.x
[10]   WANG S D, LI L, YING Y H, et al. A transcription factor OsbHLH156 regulates strategy Ⅱ iron acquisition through localising IRO2 to the nucleus in rice[J]. New Phytologist, 2020, 225(3): 1247-1260. DOI: 10.1111/nph.16232
doi: 10.1111/nph.16232
[11]   SASSE J, MARTINOIA E, NORTHEN T R. Feed your friends: Do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25-41. DOI: 10.1016/j.tplants.2017.09.003
doi: 10.1016/j.tplants.2017.09.003
[12]   SALAS-GONZÁLEZ I, REYT G, FLIS P, et al. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis[J]. Science, 2020, 371(6525): eabd0695. DOI: 10.1126/science.abd0695
doi: 10.1126/science.abd0695
[13]   YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nature Plants, 2021, 7(4): 481-499. DOI: 10.1038/s41477-021-00897-y
doi: 10.1038/s41477-021-00897-y
[14]   ZHANG J Y, LIU Y X, ZHANG N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684. DOI: 10.1038/s41587-019-0104-4
doi: 10.1038/s41587-019-0104-4
[15]   PIETERSE C M J, BERENDSEN R L, DE JONGE R, et al. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium[J]. Plant and Soil, 2020, 461(1/2): 245-263. DOI: 10.1007/s11104-020-04786-9
doi: 10.1007/s11104-020-04786-9
[16]   YU K, STRINGLIS I A, VAN BENTUM S, et al. Trans-criptome signatures in Pseudomonas simiae WCS417 shed light on role of root-secreted coumarins in Arabidopsis-mutualist communication[J]. Microorganisms, 2021, 9(3): 575. DOI: 10.3390/microorganisms9030575
doi: 10.3390/microorganisms9030575
[17]   中华人民共和国农业部. 土壤检测: [S].北京:中国标准出版社,2006.
Ministry of Agriculture of the People’s Republic of China. Soil Testing: NY/T 1121—2006 [S]. Beijing: Standards Press of China, 2006. (in Chinese)
[18]   张韫.土壤·水·植物理化分析教程[M].北京:中国林业出版社,2011:87-88.
ZHANG Y. Soil, Water, Plant Physico-Chemical Analysis Course [M]. Beijing: China Forestry Publishing House, 2011: 87-88. (in Chinese)
[19]   生态环境部. 土壤 pH值的测定 电位法: [S].北京:中国环境出版集团,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil—Determination of pH—Potentiometry: HJ 962—2018 [S]. Beijing: China Environmental Publishing Group, 2018. (in Chinese)
[20]   生态环境部. 土壤环境质量 农用地土壤污染风险管控标准: [S].北京:中国环境出版集团,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural Land: GB 15618—2018 [S]. Beijing: China Environmental Publishing Group, 2018. (in Chinese)
[21]   CHENG L J, WANG F, SHOU H X, et al. Mutation in nicotianamine aminotransferase stimulated the Fe (Ⅱ) acqui-sition system and led to iron accumulation in rice[J]. Plant Physiology, 2007, 145(4): 1647-1657. DOI: 10.1104/pp.107.107912
doi: 10.1104/pp.107.107912
[22]   SIMMONS T, CADDELL D F, DENG S W, et al. Exploring the root microbiome: extracting bacterial community data from the soil, rhizosphere, and root endosphere[J]. Journal of Visualized Experiments, 2018(135): 57561. DOI: 10.3791/57561
doi: 10.3791/57561
[23]   LIU Y X, QIN Y, CHEN T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein & Cell, 2021, 12(5): 315-330. DOI: 10.1007/s13238-020-00724-8
doi: 10.1007/s13238-020-00724-8
[24]   EDGAR R C. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461. DOI: 10.1093/bioinformatics/btq461
doi: 10.1093/bioinformatics/btq461
[25]   EDGAR R C, FLYVBJERG H. Error filtering, pair assembly and error correction for next-generation sequencing reads[J]. Bioinformatics, 2015, 31(21): 3476-3482. DOI: 10.1093/bioin-formatics/btv401
doi: 10.1093/bioin-formatics/btv401
[26]   ROBINSON M D, MCCARTHY D J, SMYTH G K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. DOI: 10.1093/bioinformatics/btp616
doi: 10.1093/bioinformatics/btp616
[27]   SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60. DOI: 10.1186/gb-2011-12-6-r60
doi: 10.1186/gb-2011-12-6-r60
[28]   LANGILLE M G I, ZANEVELD J, CAPORASO J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. DOI: 10.1038/nbt.2676
doi: 10.1038/nbt.2676
[29]   LOUCA S, PARFREY L W, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277. DOI: 10.1126/science.aaf4507
doi: 10.1126/science.aaf4507
[30]   CHEN T, LIU Y X, HUANG L Q. ImageGP: an easy-to-use data visualization web server for scientific researchers[J]. iMeta, 2022, 1(1): e5. DOI: 10.1002/imt2.5
doi: 10.1002/imt2.5
[31]   EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. PNAS, 2015, 112(8): E911-E920. DOI: 10.1073/pnas.1414592112
doi: 10.1073/pnas.1414592112
[32]   MITTER E K, DE FREITAS J R, GERMIDA J J. Bacterial root microbiome of plants growing in oil sands reclamation covers[J]. Frontiers in Microbiology, 2017, 8: 849. DOI: 10.3389/fmicb.2017.00849
doi: 10.3389/fmicb.2017.00849
[33]   HORI T, MÜLLER A, IGARASHI Y, et al. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing[J]. The ISME Journal, 2010, 4(2): 267-278. DOI: 10.1038/ismej.2009.100
doi: 10.1038/ismej.2009.100
[34]   CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. DOI: 10.1016/j.apsoil.2013.05.003
doi: 10.1016/j.apsoil.2013.05.003
[35]   SONG W Y, YAMAKI T, YAMAJI N, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain[J]. PNAS, 2014, 111(44): 15699-15704. DOI: 10.1073/pnas.1414968111
doi: 10.1073/pnas.1414968111
[36]   HUANG C F, YAMAJI N, MA J F. Knockout of a bacterial-type ATP-binding cassette transporter gene, AtSTAR1, results in increased aluminum sensitivity in Arabidopsis [J]. Plant Physiology, 2010, 153(4): 1669-1677. DOI: 10.1104/pp.110.155028
doi: 10.1104/pp.110.155028
[1] Huiling ZENG,Zuyi MO,Qiaoxian PU,Jiashu WANG,Kai FAN,Zhaowei LI. Cloning and expression analysis of OsSPL3 promoter in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 319-327.
[2] Wenfeng GONG,Zeying WANG,Jinliang LIU,Yu SUN,Xinxin YANG,Shuai WEI,Liping WEI. Characteristics of the rhizosphere bacterial community of endangered plant Cupressus gigantea in Tibet[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 241-252.
[3] Mengqi Lü, Sunghwan JUNG, Zhihong MA, Liang WAN, Dawei SUN, Haiyan CEN. Phenotyping analysis of rice lodging based on a nondestructive mechanical platform[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 129-140.
[4] Jiannan ZHANG,Yiming WANG,Jiejing ZHANG,Lei CHEN,Jinyan LUO,Jianping YI,Bin LI,Qianli AN. Detection and identification of Xanthomonas oryzae pv. oryzicola using quantitative real-time PCR and digital PCR[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 55-64.
[5] Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.
[6] Yuting QU,Qianqian ZHANG,Yefei YU,Sayikal DUYXANALE,Linlin CAI,Sujiong ZHANG,Yongfu LI,Yongchun LI. Research advances on mechanisms and preventions of the medicinal plants’ continuous cropping obstacles from the perspective of rhizosphere microecology[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 403-414.
[7] Longda GONG,Kai CHEN,Dan LI,Mei CAI,Jingwen WANG,Qichun ZHANG. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368.
[8] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[9] Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
[10] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[11] Chaoyang MO,Xinlin ZHANG,Jingping YANG. Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 527-533.
[12] Hongyu LI,Kun LI,Zhi YANG. Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 404-414.
[13] Zhen WANG,Lei HE,Yingping XIAO,Xiandong LU,Yanhong LIU,Wen LU,Shoufeng WANG. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 193-202.
[14] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[15] Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.