Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (2): 217-224    DOI: 10.3785/j.issn.1008-9209.2019.05.091
Resource utilization & environmental protection     
Nitrogen reduction effect of side-deep placement of fertilizer on the rice production
Yan HUAI1(),Zhaoming CHEN2,Gengmiao ZHANG3,Mingbei JIANG4,Jianfeng XU1,Qiang WANG2()
1.Cereals and Oils Section, Zhejiang Agricultural Technology Extension Center, Hangzhou 310020, China
2.Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
3.Zhuji Agricultural Technology Extension Center, Zhuji 311800, Zhejiang, China
4.Station of Plant Protection, Soil and Fertilizer, Chun’an Agriculture and Rural Bureau, Hangzhou 311700, China
Download: HTML   HTML (   PDF(750KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A field experiment was conducted to assess the effects of side-deep placement of fertilizer on the rice (early rice and single cropping late rice) yield, apparent nitrogen use efficiency (ANUE) and ammonia volatilization (AV). Five treatments were conducted: 1) no nitrogen fertilizer (N0); 2) conventional fertilizer (CF); 3) side-deep placement of compound fertilizers (90%CFD); 4) broadcast application of slow-release fertilizer (80%CRF); 5) side-deep placement of slow-release fertilizer (80%CRFD). Results showed that the 90%CFD, 80%CRF and 80%CRFD reduced application rate of N fertilizer by 10% and 20%, but could maintain the grain yields of early rice and single cropping late rice as compared with the CF. The grain yield of single cropping late rice was significantly higher in the 80%CRFD than in the 80%CRF. The AV amounts ranged from 12.45 to 18.50 kg/hm2 and 18.75 to 26.23 kg/hm2 in the three treatments (90%CFD, 80%CRF and 80%CRFD) during the growth period of early rice and single cropping late rice, respectively, and all of those were significantly lower as compared with the CF treatment. The AV rates in the 90%CFD, 80%CRF and 80%CRFD treatments were 9.3%-12.6% and 10.4%-12.9% during the growth period of early rice and single cropping late rice, respectively. Compared with the CF, the three treatments (90%CFD, 80%CRF and 80%CRFD) decreased the AV rates by 2.0-5.3 and 2.4-4.9 percentage points in the early rice and single cropping late rice, respectively. The AV rate was lower in the 80%CRFD than in the 80%CRF in both of the early rice and single cropping late rice. The ANUEs in the three treatments (90%CFD, 80%CRF and 80%CRFD) were 35.6%-46.9% in the early rice, and they were 4.0-15.3 percentage points higher than in the CF. In the single cropping late rice, the ANUE increased in the side-deep placement treatments of fertilizer (90%CFD and 80%CRFD) as compared with the CF, but there was no significant differences between the 80%CRF and CF treatments. It is concluded that the 90%CFD, 80%CRF and 80%CRFD are the recommended fertilizer management in the early rice, and the 90%CFD and 80%CRFD are the recommended fertilization patterns in the single cropping late rice.



Key wordsrice      slow-release fertilizer      side-deep placement of fertilizer      nitrogen fertilizer reduction     
Received: 09 May 2019      Published: 22 May 2020
CLC:  S 143  
Corresponding Authors: Qiang WANG     E-mail: 592778787@qq.com;qwang0571@126.com
Cite this article:

Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.05.091     OR     http://www.zjujournals.com/agr/Y2020/V46/I2/217


水稻侧深施肥技术的氮肥减施效应

通过田间试验研究侧深施肥技术对水稻产量、氮肥表观利用率及氨挥发的影响。试验设置5个处理:不施氮肥(N0)、常规施肥(CF)、复合肥侧深施(90%CFD)、缓释肥撒施(80%CRF)和缓释肥侧深施(80%CRFD)。结果表明:与CF相比,90%CFD、80%CRF与80%CRFD处理水稻氮素投入虽然分别减少10%和20%,但早稻和单季晚稻产量差异都不显著;80%CRFD处理相较于80%CRF处理显著提高了单季晚稻产量。3个处理(90%CFD、80%CRF和80%CRFD)的早稻和单季晚稻生长期间稻田氨挥发总量分别在12.45~18.50 kg/hm2和18.75~26.23 kg/hm2之间,都显著低于CF处理;氨挥发率分别为9.3%~12.6%和10.4%~12.9%,比CF处理分别降低了2.0~5.3和2.4~4.9百分点。80%CRFD处理在早稻和单季晚稻上的氨挥发损失都显著低于80%CRF处理。早稻试验中3个处理(90%CFD、80%CRF和80%CRFD)的氮素表观利用率为35.6%~46.9%,比CF处理增加了4.0~15.3百分点;90%CFD和80%CRFD处理的单季晚稻氮肥表观利用率也显著高于CF处理,但80%CRF处理的氮肥表观利用率与CF处理间差异不显著。综合分析,早稻生产中复合肥减量10%侧深施、缓释肥减量20%侧深施或撒施,都能实现氮肥减施稳产的目标,单季晚稻生产中则适宜采用复合肥减量10%侧深施或缓释肥减量20%侧深施的施肥方式。


关键词: 水稻,  缓释肥,  侧深施肥,  氮肥减施 

地点

Location

种植类型

Planting type

pH

w(有机质)

Organic matter

content/(g/kg)

w(全氮)

Total nitrogen

content/(g/kg)

w(碱解氮)

Available nitrogen

content/(mg/kg)

w(有效磷)

Available phosphorus

content/(mg/kg)

w(速效钾)

Available potassium

content/(mg/kg)

诸暨

Zhuji

早稻

Early rice

5.831.22.0139.611.4104.5

淳安

Chun’an

单季晚稻

Single cropping late rice

4.824.11.791.58.040.0
Table 1 Basic physicochemical properties of tested soil

处理

Treatment

早稻 Early rice单季晚稻 Single cropping late rice

基肥

Base

fertilizer

分蘖肥

Tillering

fertilizer

穗肥

Panicle

fertilizer

总施氮量

Total

nitrogen rate

基肥

Base

fertilizer

分蘖肥

Tillering

fertilizer

穗肥

Panicle

fertilizer

总施氮量

Total

nitrogen rate

N000000000
CF72.048.048.0168.0112.545.067.5225.0
90%CFD72.031.048.0151.090.045.067.5202.5
80%CRF103.031.0134.0126.054.0180.0
80%CRFD103.031.0134.0126.054.0180.0
Table 2 Application method and rate of N fertilizer at different growth stages of rice

种植类型

Planting type

处理

Treatment

有效穗数

Effective panicle

number/(104 hm-2)

每穗总粒数

Total grains

per panicle

结实率

Setting percentage/%

千粒质量

1 000-grain mass/g

产量

Yield/(kg/hm2)

早稻

Early rice

N0319.7b117.6c89.3a25.5a6 433.8b
CF353.0a142.3a77.3b25.5a8 140.5a
90%CFD369.6a146.9a73.5b25.5a8 082.4a
80%CRF329.7ab135.7ab84.0ab25.5a8 393.9a
80%CRFD339.7a133.8ab85.2ab25.5a8 122.1a

单季晚稻

Single cropping late rice

N0168.4c251.3b95.2a23.6a7 657.0c
CF190.6b286.5a91.8b24.1a9 572.0ab
90%CFD194.3b307.5a90.7b24.0a9 843.5a
80%CRF205.4ab284.8a92.3b24.0a9 071.8b
80%CRFD223.9a269.1a93.5b23.8a9 823.3a
Table 3 Effect of side-deep placement of fertilizer on the yield and its component factors of rice
Fig. 1 Effect of side-deep placement of fertilizer on the SPAD value of rice at the key growth stagesA. Early rice; B. Single cropping late rice. Different lowercase letters above the bars indicate significant differences among different treatments at the 0.05 probability level.

种植类型

Planting type

处理

Treatment

氨挥发量 Amount of ammonia volatilization/(kg/hm2)

氨挥发率

Rate of ammonia

volatilization/%

基肥

Base fertilizer

分蘖肥

Tillering fertilizer

穗肥

Panicle fertilizer

总量

Total

早稻

Early rice

N00.15c0.25c0.17b0.57
CF10.80a6.50a7.20a24.5014.6a
90%CFD7.20b4.50b6.80a18.5012.3b
80%CRF10.50a5.10ab1.30b16.9012.6b
80%CRFD7.45b3.80b1.20b12.459.3c

单季晚稻

Single cropping late rice

N00.28d0.30b0.18b0.76
CF18.60a7.32a8.50a34.4215.3a
90%CFD12.50bc5.93a7.80a26.2312.9b
80%CRF14.40b2.50b6.10a23.0012.8b
80%CRFD11.38c1.07b6.30a18.7510.4c
Table 4 Effect of side-deep placement of fertilizer on the ammonia volatilization

种植类型

Planting type

处理

Treatment

含氮量

Nitrogen content/(g/kg)

氮素吸收量

N uptake amount/(kg/hm2)

氮肥表观利用率Apparent N use

efficiency/%

秸秆

Straw

稻谷

Grain

秸秆

Straw

稻谷

Grain

地上部

Aerial part

早稻

Early rice

N09.8b4.7b15.8c63.1c78.9c
CF12.1a6.5a33.9a98.1b132.0b31.6c
90%CFD12.1a6.7a34.6a98.1b132.7b35.6b
80%CRF12.1a6.2a29.5b98.5b128.0b36.7b
80%CRFD12.9a7.0a33.3a108.5a141.8a46.9a

单季晚稻

Single cropping late rice

N03.7b8.1b25.4c61.7c87.1d
CF5.5a9.4a47.5b90.3b137.8c22.5b
90%CFD6.0a10.3a53.3a101.4a154.7a33.4a
80%CRF5.0a9.8a40.9b89.0b129.9c23.8b
80%CRFD5.3a10.1a47.1b98.8a145.9b32.6a
Table 5 Effect of side-deep placement of fertilizer on the N uptake by rice and N use efficiency
[1]   朱德峰,程式华,张玉屏,等.全球水稻生产现状与制约因素分析.中国农业科学,2010,43(3):474-479. DOI:10.3864/j.issn.0578-1752.2010.03.005
ZHU D F, CHENG S H, ZHANG Y P, et al. Analysis of status and constraints of rice production in the world. Scientia Agricultura Sinica, 2010,43(3):474-479. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2010.03.005
[2]   彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
PENG S B, HUANG J L, ZHONG X H, et al. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Scientia Agricultura Sinica, 2002,35(9):1095-1103. (in Chinese with English abstract)
[3]   黄进宝,范晓晖,张绍林,等.太湖地区黄泥土壤水稻氮素利用与经济生态适宜施氮量.生态学报,2007,27(2):588-595.
HUANG J B, FAN X H, ZHANG S L, et al. Investigation on the economically-ecologically appropriate amount of nitrogen fertilizer applied in rice production in Fe-leaching-Stagnic Anthrosols of the Taihu Lake region. Acta Ecologica Sinica, 2007,27(2):588-595. (in Chinese with English abstract)
[4]   赵宏伟,沙汉景.我国稻田氮肥利用率的研究进展.东北农业大学学报,2014,45(2):116-122. DOI:10.3969/j.issn.1005-9369.2014.02.019
ZHAO H W, SHA H J. Recent research of fertilizer-nitrogen use efficiency in paddy field of China. Journal of Northeast Agricultural University, 2014,45(2):116-122. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-9369.2014.02.019
[5]   谢立勇,许婧,郭李萍,等.水肥管理对稻田CH4排放及其全球增温潜势影响的评估.中国生态农业学报,2017,25(7):958-967. DOI:10.13930/j.cnki.cjea.160921
XIE L Y, XU J, GUO L P, et al. Impact of water/fertilizer management on methane emission in paddy fields and on global warming potential. Chinese Journal of Eco-Agriculture, 2017,25(7):958-967. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.160921
[6]   朱坚,纪雄辉,田发祥,等.典型双季稻田施磷流失风险及阈值研究.农业环境科学学报,2017,36(7):1425-1433. DOI:10.11654/jaes.2017-0314
ZHU J, JI X H, TIAN F X, et al. Research on P loss risk and threshold value in typical double-cropping rice field. Journal of Agro-Environment Science, 2017,36(7):1425-1433. (in Chinese with English abstract)
doi: 10.11654/jaes.2017-0314
[7]   田卡,钟旭华,黄农荣.“三控”施肥技术对水稻生长发育和氮素吸收利用的影响.中国农学通报,2010,26(16):150-157.
TIAN K, ZHONG X H, HUANG N R. Effect of three controls nutrient management technology on growth, development and nitrogen uptake of rice. Chinese Agricultural Science Bulletin, 2010,26(16):150-157. (in Chinese with English abstract)
[8]   刘晓伟,陈小琴,王火焰,等.根区一次施氮提高水稻氮肥利用效率的效果和原理.土壤,2017,49(5):868-875. DOI:10.13758/j.cnki.tr.2017.05.002
LIU X W, CHEN X Q, WANG H Y, et al. Effects and principle of root-zone one-time N fertilization on enhancing rice (Oryza sativa L.) N use efficiency. Soils, 2017,49(5:868-875. (in Chinese with English abstract)
doi: 10.13758/j.cnki.tr.2017.05.002
[9]   张木,唐栓虎,逄玉万,等.不同氮肥及施用方式对水稻养分吸收特征及产量形成的影响.中国土壤与肥料,2017(2):69-75. DOI:10.11838/sfsc.20170211
ZHANG M, TANG S H, PANG Y W, et al. Effects of different nitrogen fertilizer and fertilization patterns on nutrients uptake and yield formation of rice. Soils and Fertilizers Sciences in China, 2017(2):69-75. (in Chinese with English abstract)
doi: 10.11838/sfsc.20170211
[10]   彭玉,马均,蒋明金,等.缓/控释肥对杂交水稻根系形态、生理特性和产量的影响.植物营养与肥料学报,2013,19(5):1048-1057. DOI:10.11674/zwyf.2013.0503
PENG Y, MA J, JIANG M J, et al. Effects of slow/controlled release fertilizers on root morphological and physiological characteristics of rice. Journal of Plant Nutrition and Fertilizer, 2013,19(5):1048-1057. (in Chinese with English abstract)
doi: 10.11674/zwyf.2013.0503
[11]   李广宇,彭显龙,刘元英,等.前氮后移对寒地水稻产量和稻米品质的影响.东北农业大学学报,2009,40(3):7-11. DOI:10.3969/j.issn.1005-9369.2009.03.002
LI G Y, PENG X L, LIU Y Y, et al. Effects of applying N at later growth stage on rice yield and quality in cold area of China. Journal of Northeast Agricultural University, 2009,40(3):7-11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-9369.2009.03.002
[12]   李艳,唐良梁,陈义,等.施氮量对水稻氮素吸收、利用及损失的影响.土壤通报,2015,46(2):392-397. DOI:10.19336/j.cnki.trtb.2015.02.021
LI Y, TANG L L, CHEN Y, et al. The effects of nitrogen application rates on uptake, utilization and losses of nitrogen for rice. Chinese Journal of Soil Science, 2015,46(2):392-397. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2015.02.021
[13]   PAN S G, WEN X C, WANG Z M, et al. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in South China. Field Crops Research, 2017,203:139-149. DOI:10.1016/j.fcr.2016.12.011
doi: 10.1016/j.fcr.2016.12.011
[14]   LIU R Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Research, 2015,184:80-90. DOI:10.1016/j.fcr.2015.09.011
doi: 10.1016/j.fcr.2015.09.011
[15]   ZHANG M, YAO Y L, ZHAO M, et al. Integration of urea deep placement and organic addition for improving yield and soil properties and decreasing N loss in paddy field. Agriculture, Ecosystems & Environment, 2017,247:236-245. DOI:10.1016/j.agee.2017.07.001
doi: 10.1016/j.agee.2017.07.001
[16]   侯朋福,薛利祥,俞映倞,等.缓控释肥侧深施对稻田氨挥发排放的控制效果.环境科学,2017,38(12):5326-5332. DOI:10.13227/j.hjkx.201705030
HOU P F, XUE L X, YU Y L, et al. Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields. Environment Science, 2017,38(12):5326-5332. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201705030
[17]   王朝晖,刘学军,巨晓棠,等.田间土壤氨挥发的原位测定:通气法.植物营养与肥料学报,2002,8(2):205-209.
WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: venting method. Plant Nutrition and Fertilizer Science, 2002,8(2):205-209. (in Chinese with English abstract)
[18]   鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
LU R K. Analytical Methods of Soil Agricultural Chemistry. Beijing: China Agricultural Science and Technology Press, 2000. (in Chinese)
[19]   于飞,施卫明.近10年中国大陆主要粮食作物氮肥利用率分析.土壤学报,2015,52(6):1311-1324. DOI:10.11766/trxb201501270058
YU F, SHI W M. Nitrogen use efficiencies of major grain crops in China recent 10 years. Acta Pedologica Sinica, 2015,52(6):1311-1324. (in Chinese with English abstract)
doi: 10.11766/trxb201501270058
[20]   刘彦伶,来庆,徐旱增,等.不同氮肥类型对黄泥田双季稻产量及氮肥利用率的影响.浙江大学学报(农业与生命科学版),2013,39(4):403-412. DOI:10.3785/j.issn.1008-9209.2012.09.181
LIU Y L, LAI Q, XU H Z, et al. Effects of different types of nitrogen fertilizers on grain yield and nitrogen utilization of double-cropping rice in yellow clayey soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2013,39(4):403-412. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2012.09.181
[21]   杨梢娜.杭嘉湖平原稻田不同施氮水平下氮肥利用效率及环境效应研究.杭州:浙江农林大学,2010:28-35.
YANG S N. Research on nitrogen use efficiency and environmental effects of rice field under different nitrogen application in Hangjiahu plain region. Hangzhou: Zhejiang A & F University, 2010:28-35. (in Chinese with English abstract)
[22]   刘兆辉,薄录吉,李彦,等.氮肥减量施用技术及其对作物产量和生态环境的影响综述.中国土壤与肥料,2016(4):1-8. DOI:10.11838/sfsc.20160401
LIU Z H, BO L J, LI Y, et al. Effect of nitrogen fertilizer reduction on crop yield and ecological environment: a review. Soil and Fertilizer Sciences in China, 2016(4):1-8. (in Chinese with English abstract)
doi: 10.11838/sfsc.20160401
[23]   LIU X Y, WANG H Y, ZHOU J M, et al. Effect of nitrogen root zone fertilization on rice yield, uptake and utilization of macronutrient in lower reaches of Yangtze River, China. Paddy and Water Environment, 2013,15:625-638. DOI:10.1007/s10333-017-0581-3
doi: 10.1007/s10333-017-0581-3
[24]   王强,姜丽娜,潘建清,等.缓释氮肥一次性施肥对单季稻氮素吸收和产量的影响.中国农业科学,2018,51(20):3951-3960. DOI:10.3864/j.issn.0578-1752.2018.20.013
WANG Q, JIANG L N, PAN J Q, et al. Yield and nitrogen adsorption of single-cropping rice as influenced by one-off fertilization of slow-released nitrogen fertilizer. Scientia Agricultura Sinica, 2018,51(20):3951-3960. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.20.013
[1] Dongdong CAO,Wei WU,Shanyu CHEN,Yebo QIN,Guanhai RUAN,Min LU,Peili QIAN,Yutao HUANG. Seed vigor testing by low temperature germination in early rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 657-666.
[2] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[3] Ang WANG,Danchao DAI,Xuzhou MA,Qun MOU,Yongqing YU,Weiqun Lü. Effects of rice-crab culture on nitrogen leaching in rice fields in the north of China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 332-342.
[4] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[5] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.
[6] . Rice cropping information extraction mapping based on sample knowledge mining using high resolution remote sensing images[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 765-774.
[7] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, ZHANG Xin, HUANG Yuqing, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider . Effects of zinc and silicon on cadmium toxicity and mineral element translocation in two rice (Oryza sativa) genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 294-310.
[8] ZHANG Zhichang, PAN Weihuai, YAN Xu, YIN Shoupeng, CHENG Zhukuan, PAN Jianwei. Screening and phenotypic identification of auxin-resistant root system mutants in rice (Oryza sativa L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 311-317.
[9] PU Shilin, DENG Fei, HU Hui, ZHONG Xiaoyuan, WANG Li, LI Wu, LI Shuxian, LIAO Shuang, REN Wanjun. Effects of different hill spacings and seedling numbers per hill on dry matter production and yield of machine-transplanting hybrid rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 21-30.
[10] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[11] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[12] HU Chunqin, LI Rui, HONG Chunlai, CAO Wenting, LIU Jiawei, ZHOU Jun, WENG Huanxin. Enhancement effects of seaweed iodine fertilizer application on the iodine contents of rice, vegetables and fruits in the field[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 552-560.
[13] DAI Zou, YU Huaqing, GUO Changchun, MA Jun, LI Na, YANG Zhiyuan, XU Hui, SUN Yongjian. Effects of Na2SeO3 and Na2SiO3 on Cd uptake and accumulation in two different rice (Oryza Sativa L.) cultivars at jointing stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 441-450.
[14] WEN Xu, MA Xuzhou, FAN Wei, LI Xingxing. Preliminary study on effects of different areas of reed type rice on water purification in young crab pond[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 350-358.
[15] WENG Yuhao, CHEN Ming. Application of multilayer network in protein-protein interaction networks (PPI) of rice and cancer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 15-23.