Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (1): 85-94    DOI: 10.3785/j.issn.1008-9209.2017.11.213
Resource utilization & environmental protection     
Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages
Xu WEN1,2(),Xuzhou MA1(),Wei FAN3,Xingxing LI4,Yingliang ZHONG2
1. National Demonstration Center of Experimental Fisheries Science Education/Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture/Shanghai Engineering Research Center of Aquaculture/Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China
2. Fisheries Research Institute of Ganzhou City, Ganzhou 341100, Jiangxi, China
3. Fisheries Technology Extension Station of Yunnan Province, Kunming 650034, China
4. Fisheries Station of Zunyi City, Zunyi 563000, Guizhou, China
Download: HTML   HTML (   PDF(1109KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming to explore the effect of reasonable reed type rice acreage on the purification of culture water of crab pond, we analyzed the characteristics of phytoplankton functional group community and their relationship with environmental factors. From July to October, 2015, the species composition, biological density, biomass, Shannon-Wiener diversity index, Pielou evenness index, and Margalef richness index of phytoplankton and their relationship with environmental factors were analyzed. The results showed that a total of 126 phytoplankton species were identified, and most of them belonged to Bacillariophyta, Chlorophyta and Cyanobacteria, being classified into 71 genera and eight phyla. Simultaneously, 16 dominant species were classed into 12 functional groups of R, S1, G, J, B, D, P, LO, WO, X2, X1 and MP. The ranges of average biological density, average biomass, Shannon-Wiener diversity index, Pielou evenness index and Margalef richness index were 0-(8.135±4.794)×107 L-1, (1.079±0.454)-(38.162±13.414) mg/L, (1.301±0.072)-(2.387±0.368), (0.346±0.006)-(0.843±0.125), (1.038±0.183)-(1.852±0.131), respectively. The redundancy analysis (RDA) result showed that the most important factors affecting the structure of phytoplankton functional groups were nitrate nitrogen, total nitrogen, temperature, total phosphorus, and chlorophyll a. The water pollution level of young carb pond was α-fouling. The comparative analysis of phytoplankton diversity in the young crab pond with different reed type rice acreages showed that the Shannon-Wiener diversity index and Pielou evenness index of the phytoplankton in the 20% group were all higher than those in the other three groups and were relatively stable; however, the richness index of the phytoplankton in the 20% group was higher than the other three groups in the mid-term, and lower than 0% and 10% groups in the late-term, but higher than 30% group. In conclusion, the crab pond with reed type rice of 20% area is more appropriate.



Key wordsChinese mitten crab      reed type rice      phytoplankton functional groups      biodiversity index      environmental factor     
Received: 21 November 2017      Published: 28 March 2019
CLC:  S 966.16  
  X 824  
  X 826  
Corresponding Authors: Xuzhou MA     E-mail: wenxu.shou@foxmail.com;xuzhouma@126.com
Cite this article:

Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2017.11.213     OR     http://www.zjujournals.com/agr/Y2019/V45/I1/85


不同面积芦苇稻幼蟹塘浮游植物功能类群的结构特征

为分析不同面积(0%、10%、20%、30%)芦苇稻幼蟹塘浮游植物功能类群结构特征及其与环境因子的关系,并探究合适的幼蟹池塘套种芦苇稻的面积,在2015年7—10月对不同面积芦苇稻幼蟹塘浮游植物进行了监测,分析了其种类组成、生物密度、生物量、Shannon-Wiener多样性指数、Pielou均匀度指数和Margalef丰富度指数的变化规律及其与环境因子的关系。结果表明:在共采集到的126种浮游植物中,以绿藻门、硅藻门和蓝藻门为主,隶属于8门71属,16个优势种分属于12个功能类群,为R、S1、G、J、B、D、P、LO、WO、X2、X1、MP。不同面积芦苇稻幼蟹塘浮游植物平均密度、生物量、Shannon-Wiener多样性指数、Pielou均匀度指数和Margalef丰富度指数的变化范围分别为:0~(8.135±4.794)×107 L-1、(1.079±0.454)~(38.162±13.414) mg/L、(1.301±0.072)~(2.387±0.368)、(0.346±0.006)~(0.843±0.125)、(1.038±0.183)~(1.852±0.131)。浮游植物功能类群丰度的主要驱动因子是硝酸态氮、总氮、水温、总磷、叶绿素a。不同面积芦苇稻幼蟹塘水体污染等级为α-中污型,其中20%组池塘浮游植物的Shannon-Wiener多样性指数、Pielou均匀度指数整体上均高于其他3组且相对稳定,丰富度指数在养殖中期高于其他3组,在养殖后期低于0%和10%组,但高于30%组,因此,幼蟹塘以种植20%面积的芦苇稻较为合适。


关键词: 中华绒螯蟹,  芦苇稻,  浮游植物功能类群,  生物多样性指数,  环境因子 

芦苇稻面积比例

Reed type rice acreage proportion/%

水稻穴数

Number of hill

每穴分蘖数

Tiller number per hill

mf(稻穗)

Fresh mass of spike/g

md(稻穗)

Dry mass of spike/g

101 124.3±8.1415~2512.66±0.288.58±0.11
202 237.0±9.1715~2512.64±0.718.92±0.30
303 404.3±8.6215~2513.58±0.908.81±0.48
Table 1 Cultivation and production situation of reed type rice in different treatment groups
Fig. 1 Variation of species composition of phytoplankton in the experimental ponds
Fig. 2 Variation of species composition of phytoplankton in the young crab pond with different reed type rice acreages

组群

Group

代表种(属)

Representative species (genus)

生境描述

Habitat description

R绿球藻属 Chlorococcum sp.

寡营养型到中营养型深水湖泊的变温层或

深水层

S1席藻 Phormidium sp.,蓝纤维藻 Dactylococcopsis sp.透明度较低的混合水体
G空球藻 Eudorina sp.,实球藻 Pandorina sp.

富营养型小型湖泊及大型河流和贮水池等

静止水域

J

集星藻Actinastrumsp.,盘星藻Pediastrumsp.,空星藻Coelastrumsp.,

栅藻Scenedesmussp.

混合营养型高纯度的浅水水体
B

具星小环藻Cyclotella stelligera,岛直链藻Aulacoseira islandica(Mull.)

Simonsen

中营养型中小型湖泊,无分层现象
D尖针杆藻 Synedra acus,双头针杆藻 Synedra amphicephal河流在内的浑浊型浅水体
P普通等片藻 Diatoma vulgare,颗粒直链藻 A. granulate连续或半连续的水体混合层,水体营养指数高
LO平裂藻 Merismopedia sp.,多甲藻 Peridinium sp.,色球藻 Chrococccus sp.寡营养型到富营养型、大中型深水或浅水湖泊
WO衣藻 Chlamydomonas sp.,绿色颤藻 Oscillatoria chlorina有机物或腐殖质丰富的河流和池塘
X2蓝隐藻 Chroomonas sp.,隐藻 Cryptomonas sp.中营养型到高度营养型浅水水体
X1微小单针藻 Monoraphidum minutum,纤维藻 Ankistrodesmus sp.富营养型到高度营养型浅水水体
MP卵形藻 Cocconeis sp.,舟形藻 Navicula sp.,链丝藻 Ulothrix sp.经常受搅动的、无机的、浑浊的水体
Table 2 Functional groups of phytoplankton dominant species in the young crab pond with different reed type rice acreages
Fig. 3 Variation of average density of phytoplankton in the young crab pond with different reed type rice acreages

芦苇稻面积比例

Reed type rice acreage proportion/%

平均密度

Average density/(107L-1)

平均生物量

Average biomass/(mg/L)

02.042±0.764ab10.233±3.769a
101.389±0.371b11.411±4.451a
202.033±0.656ab16.099±4.862a
304.025±1.941a14.170±4.311a
Table 3 Average density and biomass of phytoplankton in the young crab pond with different reed type rice acreages
Fig. 4 Variation of average biomass of phytoplankton in the young crab pond with different reed type rice acreages
Fig. 5 Variation of Shannon-Wiener diversity index average of phytoplankton in the young crab pond with different reed type rice acreages
Fig. 6 Variation of Pielou evenness index average of phytoplankton in the young crab pond with different reed type rice acreages
Fig. 7 Variation of Margalef richness index average of phytoplankton in the young crab pond with different reed type rice acreages

水质指标

Water quality index

芦苇稻面积比例Reed type rice acreage proportion/%
0102030
水温 t/℃19.83~29.0719.07~29.1719.30~29.1718.77~29.53
平均值Average/℃25.09±3.0325.40±2.9025.15±2.8825.04±3.18
ρ(DO)/(mg/L)0.86~5.011.60~3.621.59~5.011.28~3.78
平均值Average/(mg/L)3.07±1.432.84±0.912.96±0.962.80±0.77
pH7.12~7.796.89~8.737.09~7.856.95~8.10
平均值Average7.38±0.337.42±0.207.42±0.567.41±0.21
ρ(Ca-Mg总硬度) Ca-Mg total hardness/(mg/L)0.108~0.7430.092~0.7560.103~0.7530.088~0.724
平均值Average/(mg/L)0.300±0.2910.300±0.2980.306±0.2990.282±0.276
ρ(CODMn)/(mg/L)7.19~11.646.90~11.297.00~12.236.67~12.51
平均值Average/(mg/L)10.52±1.879.98±1.309.90±1.3510.22±1.58
ρ(TN)/(mg/L)1.009~1.0371.001~1.0351.007~1.0311.014~1.062
平均值Average/(mg/L)1.026±0.0091.025±0.0141.026±0.0091.032±0.015
ρ(NH4-N)/(mg/L)0.052~0.0590.051~0.0590.051~0.0550.052~0.059
平均值Average/(mg/L)0.054±0.0030.054±0.0030.053±0.0020.055±0.003
ρ(NO2-N)/(mg/L)0.011~0.0150.011~0.0130.010~0.0130.011~0.015
平均值Average/(mg/L)0.012±0.0020.012±0.0010.012±0.0010.013±0.002
ρ(NO3-N)/(mg/L)0.002~0.0060.003~0.0050.002~0.0040~0.004
平均值Average/(mg/L)0.004±0.0010.0035±0.0010.003±0.0010.002±0.002
ρ(TP)/(mg/L)0.004~0.0560.004~0.0570.004~0.0560.004~0.056
平均值Average/(mg/L)0.015±0.0090.012±0.0050.011±0.0050.012±0.006
ρ(PO43--P)/(mg/L)0~0.0020~0.0010~0.0020.001~0.002
平均值Average/(mg/L)0.001±0.0010.001±0.0010.001±0.0010.001±0.001
ρ(Chl a)/(mg/L)0.008~0.2630.019~0.2540.047~0.2680.024~0.440
平均值Average/(mg/L)0.104±0.0860.183±0.0860.135±0.0820.230±0.141
Table 4 Characteristics of water quality in the young crab pond with different reed type rice acreages
Fig.8 Redundancy analysis of functional groups of phytoplankton and water environmental factors in the young crab pond with different reed type rice acreages
[1]   LEPISTL, HOLOPAINENA L, VUORISTOH. Type-specific and indicator taxa of phytoplankton as a quality criterion for assessing the ecological status of Finnish boreal lakes. Limnologica-Ecology and Management of Inland Waters, 2004,34:236-248.
[2]   黄玉瑶.内陆水域污染生态学:原理与应用.北京:科学出版社,2001:11-58.
HUANGY Y. Inland Water Pollution Ecology: Principle and Application. Beijing: Science Press, 2001:11-58. (in Chinese)
[3]   ROTTE, CANTONATIM, FUREDERL, et al. Benthic algae in high altitude streams of the Alps: a neglected component of the aquatic biota. Hydrobiologia, 2006,562(1):195-216.
[4]   SIDIKM J, NABIM R U, HOQUEM A. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuarine, Coastal and Shelf Science, 2008,80(2):251-260.
[5]   HOEKC. Algae: An Introduction to Phycology. Cambridge,UK: Cambridge University Press, 1995.
[6]   REYNOLDSC S, HUSZARV, KRUKC, et al. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 2002,24(5):417-428.
[7]   REYNOLDSC S. Phytoplankton assemblages and their periodicity in stratifying lake systems. Ecography, 1980,3(3):141-159.
[8]   杨文,朱津永,陆开宏,等.淡水浮游植物功能类群分类法的提出、发展及应用.应用生态学报,2014,25(6):1833-1840.
YANGW, ZHUJ Y, LUK H, et al. The establishment, development and application of classification approach of freshwater phytoplankton based on the functional group: a review. Chinese Journal of Applied Ecology, 2014,25(6):1833-1840. (in Chinese with English abstract)
[9]   SALMASON, PADISAKJ. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 2007,578(1):97-112.
[10]   KRUKC, HUSZARV L M, PEETERSE T H M, et al. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 2010,55(3):614-627.
[11]   李哲,郭劲松,方芳,等.三峡小江回水区蓝藻季节变化及其与主要环境因素的相互关系.环境科学,2010(2):301-309.
LIZ, GUOJ S, FANGF, et al. Seasonal variation of cyanobacteria and its potential relationship with key environmental factors in Xiaojiang backwater area, Three Gorges Reservoir. Environmental Science, 2010(2):301-309. (in Chinese with English abstract)
[12]   田永强,俞超超,王磊,等.福建九龙江北溪浮游植物群落分布特征及其影响因子.应用生态学报,2012,23(9):2559-2565.
TIANY Q, YUC C, WANGL, et al. Dynamic changes of phytoplankton’s community structure in Beixi of Jiulongjiang River, Fujian Province of east China and related affecting factors. Chinese Journal of Applied Ecology, 2012,23(9):2559-2565. (in Chinese with English abstract)
[13]   高国敬,肖利娟,林秋奇,等.海南省典型水库浮游植物功能类群的结构特征与水质评价.生态科学,2013,32(2):144-150.
GAOG J, XIAOL J, LINQ Q, et al. Structure of phytoplankton functional groups and water quality assessment of main reservoirs in Hainan Province. Ecological Science, 2013,32(2):144-150. (in Chinese with English abstract)
[14]   岳强,黄成,史元康,等.粤北2座不同营养水平水库浮游植物功能类群的季节演替.生态与农村环境学报,2012,28(4):432-438.
YUEQ, HUANGC, SHIY K, et al. Seasonal succession of phytoplankton function groups in two reservoirs different in eutrophic level in northern Guangdong Province, China.Journal of Ecology and Rural Environment, 2012,28(4):432-438. (in Chinese with English abstract)
[15]   郝俊,马旭洲,王武,等.河蟹生态养殖池浮游植物功能类群的结构特征.湖泊科学,2016,28(5):1047-1056.
HAOJ, MA X Z, WANGW, et al. Structure of phytoplankton functional groups in the ecological farming crab ponds. Journal of Lake Sciences, 2016,28(5):1047-1056. (in Chinese with English abstract)
[16]   王武,王成辉,马旭洲.河蟹生态养殖.北京:中国农业出版社,2013:14-207.
WANGW, WANGC H, MA X Z. Crab Farming. Beijing: China Agricultural Press, 2013:14-207. (in Chinese)
[17]   温旭,马旭洲,范伟,等.不同面积芦苇稻对幼蟹塘水质净化效果的初步探究.浙江大学学报(农业与生命科学版),2017,43(3):350-358.
WENX, MA X Z, FANW, et al. Preliminary study on effects of different areas of reed type rice on water purification in young crab pond. Journal of Zhejiang University (Agriculture and Life Sciences), 2017,43(3):350-358. (in Chinese with English abstract)
[18]   陶程,杨永超,马旭洲,等.河蟹幼蟹培育池浮游植物的群落结构.大连海洋大学学报,2015,30(6):668-673.
TAOC, YANGY C, MA X Z, et al. Phytoplankton community structure in a juvenile Chinese mitten handed crab Eriocheir sinensis rearing pond. Journal of Dalian Ocean University, 2015,30(6):668-673. (in Chinese with English abstract)
[19]   黄祥飞.湖泊生态调查观测与分析.北京:中国标准出版社,1999:4-167.
HUANGX F. Observation and Analysis of Lake Ecosystem. Beijing: Standards Press of China, 1999:4-167. ( in Chinese)
[20]   胡鸿钧,魏印心.中国淡水藻类:系统、分类及生态.北京:科学出版社,2006.
HUH J, WEIY X. Chinese Freshwater Algae: System, Classification and Ecology. Beijing: Science Press, 2006. (in Chinese)
[21]   周凤霞,陈剑虹.淡水微型生物与底栖动物图谱.4版.北京:化学工业出版社,2011.
ZHOUF X, CHENJ H. Freshwater Microbes and Benthic Fauna Map. 4th ed. Beijing: Chemical Industry Press, 2011. (in Chinese)
[22]   国家环境保护总局 《水和废水监测分析方法》编委会.水和废水监测分析方法.4版.北京:中国环境科学出版社,2002:88-186.
State Environmental Protection Administration. Methods for the Monitoring and Analysis of Water and Waste Water. 4th ed. Beijing: Chinese Environmental Science Press, 2002:88-186. (in Chinese)
[23]   PADISáKJ, CROSSETTIL O, NASELLI-FLORESL. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 2009,621(1):1-19.
[24]   国家环境保护局.渔业水质标准:GB 11607—1989.北京:中国标准出版社,1990:1-4.
State Bureau of Environmental Protection. Water Quality Standard for Fisheries: GB 116071989. Beijing: Standards Press of China, 1990:1-4. (in Chinese)
[25]   国家环境保护局,国家质量监督检验检疫总局.地表水环境质量标准:GB 3838—2002.北京:中国环境科学出版社,2002.
State Bureau of Environmental Protection, State Administration for Quality Supervision and Inspection and Quarantine. Environmental Quality Standards for Surface Water: GB 38382002. Beijing: China Environmental Science Press, 2002. (in Chinese)
[26]   孙濡泳.动物生态学原理.3版.北京:北京师范大学出版社,2008:6-587.
SUNR Y. Animal Ecology Principles. 3rd ed. Beijing: Beijing Normal University Press, 2008:6-587. (in Chinese)
[27]   赵文,魏洪祥,郭凯.2006—2007年大连大窑湾海区浮游植物的群落结构及其季节变化.大连海洋大学学报,2011,26(4):291-298.
ZHAOW, WEIH X, GUOK. The community structure and the seasonal changes of phytoplankton in Dayao Bay in Dalian Coast from 2006 to 2007. Journal of Dalian Ocean University, 2011,26(4):291-298. (in Chinese with English abstract)
[28]   况琪军,马沛明,胡征宇,等.湖泊富营养化的藻类生物学评价与治理研究进展.安全与环境学报,2005,5(2):87-91.
KUANGQ J, MA P M, HUZ Y, et al. Study on the evaluation and treatment of lake eutrophication by means of algae biology. Journal of Safety and Environment, 2005,5(2):87-91. (in Chinese with English abstract)
[29]   沈韫芬,章宗涉,龚循矩,等.微型生物监测技术.北京:中国建筑工业出版社,1990:7-408.
SHENY F, ZHANGZ S, GONGX J, et al. Microbiological Monitoring Technology. Beijing: China Construction Industry Press, 1990:7-408. (in Chinese)
[30]   吴伟,范立民,瞿建宏,等.池塘河蟹生态养殖对水体环境的影响.安全与环境学报,2006,6(4):50-54.
WUW, FANL M, QUJ H, et al. Effect of river crab eco-culture in ponds on water environment. Journal of Safety and Environment, 2006,6(4):50-54. (in Chinese with English abstract)
[31]   陈宇炜,高锡云.浮游植物叶绿素a含量测定方法的比较测定.湖泊科学,2000,12(2):185-188.
CHENY W, GAOX Y. Comparison of two methods for phytoplankton chlorophyll-a concentration measurement. Journal of Lakes Science, 2000,12(2):185-188. (in Chinese with English abstract)
[32]   陈立婧,吴竹臣,胡忠军,等.上海崇明岛明珠湖浮游植物群落结构.应用生态学报,2011,22(6):1599-1605.
CHENL J, WUZ C, HUZ J, et al. Phytoplankton community structure in Mingzhu Lake of Chongming Island, Shanghai. Chinese Journal of Applied Ecology, 2011,22(6):1599-1605. (in Chinese with English abstract)
[1] WEN Xu, MA Xuzhou, FAN Wei, LI Xingxing. Preliminary study on effects of different areas of reed type rice on water purification in young crab pond[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 350-358.
[2] REN Juan, ZHANG Lei, ZENG Lingzao, WU Laosheng, SHI Jiachun. Groundwater ammonia-oxidizing bacteria distribution and the correlations between the distribution and environmental factors around livestock lagoons[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 589-.
[3] YUE Wucheng, CHEN Jiao, CI Yuanji, HUANG Shu, WANG Jun, WANG Chenghui. Effects of limb regeneration on molt, growth and related gene expression in Chinese mitten crab (Eriocheir sinensis)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(04): 502-508.
[4] Zhang Jiao, Li Yuecheng, Zhang Dazhi. Species diversity of soil animals at different desert habitats in Baijitan region of Ningxia and its relationship with environmental factors[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 428-438.