Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 692-700    DOI: 10.3785/j.issn.1008-9209.2022.08.221
Reviews     
Research advances in biology, ecology and management of rice planthoppers
Peng KUAI(),Yonggen LOU()
State Key Laboratory of Rice Biology/Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(854KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Rice planthoppers, mainly including Nilaparvata lugens, Sogatella furcifera, and Laodelphax striatellus, are one of the most important insect pests of rice in China. In this review, we summarized the latest research progress on the molecular basis of important genetic characteristics (wing-morph differentiation, fecundity, insecticide resistance) of rice planthoppers, interactions among rice, rice planthoppers, natural enemies of rice planthoppers and other organisms, mechanisms underlying rice planthopper outbreak, and management of rice planthoppers. Finally, we suggest that future studies should further dissect the molecular basis of biology and ecology related to rice planthopper outbreak, and find the coordination mechanisms between intensified agriculture and rice ecosystem resistance at the micro level, so as to maintain or improve the rice ecosystem resistance, and achieve sustainable management of rice planthoppers in the context of intensified agriculture.



Key wordsrice planthoppers      biological characteristics      interspecific interactions      outbreak mechanisms      sustainable management     
Received: 22 August 2022      Published: 27 December 2022
CLC:  S 435.11  
Corresponding Authors: Yonggen LOU     E-mail: kpchen7493@163.com;yglou@zju.edu.cn
Cite this article:

Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.08.221     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/692


稻飞虱生物学、生态学及其防控技术研究进展

稻飞虱是制约我国水稻生产的一类最主要害虫,主要包括褐飞虱、白背飞虱和灰飞虱。本文重点就稻飞虱重要遗传特性(翅型分化、繁殖力、抗药性)分子基础、水稻-稻飞虱-天敌-其他生物种间互作关系、稻飞虱灾变机制及其防控技术等方面的最新研究成果进行综述,并提出今后应进一步深入剖析稻飞虱灾变的生物学与生态学分子基础,明确集约农业与稻田生态系统抗性在微观层面的协调机制,以在集约农业背景下维持或提高稻田生态系统抗性,实现稻飞虱的可持续治理。


关键词: 稻飞虱,  生物学特性,  种间互作关系,  灾变机制,  可持续治理 
[1]   程家安,朱金良,祝增荣,等.稻田飞虱灾变与环境调控[J].环境昆虫学报,2008,30(2):176-182.
CHENG J A, ZHU J L, ZHU Z R, et al. Rice planthopper outbreak and environment regulation[J]. Journal of Environmental Entomology, 2008, 30(2): 176-182. (in Chinese with English abstract)
[2]   HEONG K L, CHENG J A, ESCALADA M M. Rice Plant-hoppers: Ecology, Management, Socio Economics and Policy[M]. Dordrecht, the Netherlands: Springer, 2015.
[3]   林华峰,苏卫华,周本国,等.稻飞虱研究[M].北京:科学出版社,2015.
LIN H F, SU W H, ZHOU B G, et al. Studies on Rice Planthoppers[M]. Beijing: Science Press, 2015. (in Chinese)
[4]   XU H J, XUE J, LU B, et al. Two insulin receptors determine alternative wing morphs in planthoppers[J]. Nature, 2015, 519(7544): 464-467. DOI:10.1038/nature14286
doi: 10.1038/nature14286
[5]   ZHANG J L, CHEN S J, LIU X Y, et al. The transcription factor Zfh1 acts as a wing-morph switch in planthoppers[J]. Nature Communications, 2022, 13(1): 5670. DOI:10.1038/s41467-022-33422-6
doi: 10.1038/s41467-022-33422-6
[6]   YE X H, XU L, LI X, et al. miR-34 modulates wing polyphenism in planthopper[J]. PLoS Genetics, 2019, 15(6): e1008235. DOI:10.1371/journal.pgen.1008235
doi: 10.1371/journal.pgen.1008235
[7]   XU L, ZHANG J, ZHAN A R, et al. Identification and analysis of microRNAs associated with wing polyphenism in the brown planthopper, Nilaparvata lugens [J]. International Journal of Molecular Sciences, 2020, 21(24): 9754. DOI:10.3390/ijms21249754
doi: 10.3390/ijms21249754
[8]   LIU F Z, LI X, ZHAO M H, et al. Ultrabithorax is a key regulator for the dimorphism of wings, a main cause for the outbreak of planthoppers in rice[J]. National Science Review, 2020, 7(7): 1181-1189. DOI:10.1093/nsr/nwaa061
doi: 10.1093/nsr/nwaa061
[9]   LI X, ZHAO M H, TIAN M M, et al. An InR/mir-9a/NlUbx regulatory cascade regulates wing diphenism in brown planthoppers[J]. Insect Science, 2020, 28(5): 1300-1313. DOI:10.1111/1744-7917.12872
doi: 10.1111/1744-7917.12872
[10]   JIANG J R, XU Y L, LIN X D. Role of Broad-complex (Br) and Krüppel homolog 1 (Kr-h1) in the ovary development of Nilaparvata lugens [J]. Frontiers in Physiology, 2017, 8: 1013. DOI:10.3389/fphys.2017.01013
doi: 10.3389/fphys.2017.01013
[11]   WANG W, YANG R R, PENG L Y, et al. Proteolytic activity of the proteasome is required for female insect reproduction[J]. Open Biology, 2021, 11(2): 200251. DOI:10.1098/rsob.200251
doi: 10.1098/rsob.200251
[12]   PENG L Y, DAI Z W, YANG R R, et al. NADPH oxidase 5 is essential for molting and oviposition in a rice planthopper Nilaparvata lugens [J]. Insects, 2020, 11(9): 642. DOI:10.3390/insects11090642
doi: 10.3390/insects11090642
[13]   SHEN Y, LU J B, CHEN Y Z, et al. Lateral oviduct-secreted proteins in the brown planthopper[J]. Journal of Proteomics, 2022, 266: 104670. DOI:10.1016/j.jprot.2022.104670
doi: 10.1016/j.jprot.2022.104670
[14]   GE L Q, ZHOU Y K, GU H T, et al. Male selenoprotein F-like (SPF-L) influences female reproduction and population growth in Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Frontiers in Physiology, 2019, 10: 1196. DOI:10.3389/fphys.2019.01196
doi: 10.3389/fphys.2019.01196
[15]   DONG Y, CHEN W W, KANG K, et al. FoxO directly regulates the expression of TOR/S6K and vitellogenin to modulate the fecundity of the brown planthopper[J]. Science China: Life Sciences, 2021, 64(1): 133-143. DOI:10.1007/s11427-019-1734-6
doi: 10.1007/s11427-019-1734-6
[16]   CHEN W W, CHEN L E, LI D, et al. Two alternative splicing variants of a sugar gustatory receptor modulate fecundity through different signalling pathways in the brown planthopper, Nilaparvata lugens [J]. Journal of Insect Physiology, 2019, 119: 103966. DOI:10.1016/j.jinsphys.2019.103966
doi: 10.1016/j.jinsphys.2019.103966
[17]   徐鹿,赵钧,赵春青,等.灰飞虱对杀虫剂的抗性分子机制研究进展[J].农药学学报,2018,20(2):135-145. DOI:10.16801/j.issn.1008-7303.2018.0018
XU L, ZHAO J, ZHAO C Q, et al. Research progress in molecular mechanisms of resistance to insecticides in Laodelphax striatellus [J]. Chinese Journal of Pesticide Science, 2018, 20(2): 135-145. (in Chinese with English abstract)
doi: 10.16801/j.issn.1008-7303.2018.0018
[18]   廖逊,万虎,李建洪.褐飞虱对杀虫剂抗性研究进展[J].农药学学报,2019,21(5/6):718-728. DOI:10.16801/j.issn.1008-7303.2019.0083
LIAO X, WAN H, LI J H. Research progress on insecticides resistance in brown planthopper, Nilaparvata lugens (Stål)[J]. Chinese Journal of Pesticide Science, 2019, 21(5/6): 718-728. (in Chinese with English abstract)
doi: 10.16801/j.issn.1008-7303.2019.0083
[19]   CAI T W, ZHANG Y H, LIU Y, et al. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress[J]. Insect Science, 2021, 28(2): 355-362. DOI:10.1111/1744-7917.12834
doi: 10.1111/1744-7917.12834
[20]   LU K, WANG Y, CHEN X, et al. Characterization and functional analysis of a carboxylesterase gene associated with chlorpyrifos resistance in Nilaparvata lugens (Stål)[J]. Comparative Biochemistry and Physiology, Part C: Toxicology & Pharmacology, 2017, 203: 12-20. DOI:10.1016/j.cbpc.2017.10.005
doi: 10.1016/j.cbpc.2017.10.005
[21]   VONTAS J G, SMALL G J, HEMINGWAY J. Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens [J]. The Biochemical Journal, 2001, 357: 65-72. DOI:10.1042/0264-6021:3570065
doi: 10.1042/0264-6021:3570065
[22]   董岩.水稻新种质抗灰飞虱QTL分析及蛋白质组学研究[D].南京:南京农业大学,2017.
DONG Y. QTLs analysis of small brown planthopper resistance and proteomics in a new rice germplasm[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese with English abstract)
[23]   范德佳.水稻抗白背飞虱QTL qWBPH 3.2和qWBPH11的精细定位[D].南京:南京农业大学,2018.
FAN D J. Fine mapping of QTLs qWBPH 3.2 and qWBPH11 conferring the resistance to white-backed planthopper in rice[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract)
[24]   MISHRA A, BARIK S R, PANDIT E, et al. Genetics, mechanisms and deployment of brown planthopper resistance genes in rice[J]. Critical Reviews in Plant Sciences, 2022, 41(2): 91-127. DOI:10.1080/07352689.2022.2062906
doi: 10.1080/07352689.2022.2062906
[25]   LU J, LI J C, JU H P, et al. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice[J]. Molecular Plant, 2014, 7(11): 1670-1682. DOI:10.1093/mp/ssu085
doi: 10.1093/mp/ssu085
[26]   ZHANG J, LUO T, WANG W W, et al. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens [J]. Plant, Cell and Environment, 2017, 40(10): 2147-2159. DOI:10.1111/pce.13012
doi: 10.1111/pce.13012
[27]   YE M, KUAI P, HU L F, et al. Suppression of a leucine-rich repeat receptor-like kinase enhances host plant resistance to a specialist herbivore[J]. Plant, Cell and Environment, 2020, 43(10): 2571-2585. DOI:10.1111/pce.13834
doi: 10.1111/pce.13834
[28]   ZHANG Y B, CHEN M T, ZHOU S X, et al. Silencing an E3 ubiquitin ligase gene OsJMJ715 enhances the resistance of rice to a piercing-sucking herbivore by activating ABA and JA signaling pathways[J]. International Journal of Molecular Sciences, 2021, 22(23): 13020. DOI:10.3390/ijms222313020
doi: 10.3390/ijms222313020
[29]   LIU C X, HAO F H, HU J, et al. Revealing different systems responses to brown planthopper infestation for pest susceptible and resistant rice plants with the combined metabonomic and gene-expression analysis[J]. Journal of Proteome Research, 2010, 9(12): 6774-6785. DOI:10.1021/pr100970q
doi: 10.1021/pr100970q
[30]   YANG J O, NAKAYAMA N, TODA K, et al. Elicitor(s) in Sogatella furcifera (Horváth) causing the Japanese rice plant (Oryza sativa L.) to induce the ovicidal substance, benzyl benzoate[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(6): 1258-1261. DOI:10.1271/bbb.130055
doi: 10.1271/bbb.130055
[31]   ALAMGIR K M, HOJO Y, CHRISTELLER J T, et al. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory[J]. Plant, Cell and Environment, 2016, 39(2): 453-466. DOI:10.1111/pce.12640
doi: 10.1111/pce.12640
[32]   WANG W W, YU Z X, MENG J P, et al. Rice phenolamindes reduce the survival of female adults of the white-backed planthopper Sogatella furcifera [J]. Scientific Reports, 2020, 10(1): 5778. DOI:10.1038/s41598-020-62752-y
doi: 10.1038/s41598-020-62752-y
[33]   SHANGGUAN X X, ZHANG J, LIU B F, et al. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants[J]. Plant Physiology, 2017, 176(1): 552-565. DOI:10.1104/pp.17.00755
doi: 10.1104/pp.17.00755
[34]   ZENG J M, YE W F, HU W H, et al. The N-terminal subunit of vitellogenin in planthopper eggs and saliva acts as a reliable elicitor that induces defenses in rice[J]. BiorRxiv, 2022.
[35]   JI R, YE W F, CHEN H D, et al. A salivary endo-beta-1, 4-glucanase acts as an effector that enables the brown planthopper to feed on rice[J]. Plant Physiology, 2017, 173(3): 1920-1932. DOI:10.1104/pp.16.01493
doi: 10.1104/pp.16.01493
[36]   YE W F, YU H X, JIAN Y K, et al. A salivary EF-hand calcium-binding protein of the brown planthopper Nilaparvata lugens functions as an effector for defense responses in rice[J]. Scientific Reports, 2017, 7: 40498. DOI:10.1038/srep40498
doi: 10.1038/srep40498
[37]   HUANG H J, CUI J R, XIA X, et al. Salivary DNase Ⅱ from Laodelphax striatellus acts as an effector that suppresses plant[J]. New Phytologist, 2019, 224(2): 860-874. DOI:10.1111/nph.15792
doi: 10.1111/nph.15792
[38]   ZHENG X H, ZHU L L, HE G C. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation[J]. Current Opinion in Insect Science, 2021, 45: 14-20. DOI:10.1016/j.cois.2020.11.005
doi: 10.1016/j.cois.2020.11.005
[39]   KOBAYASHI T, YAMAMOTO K, SUETSUGU Y, et al. Genetic mapping of the rice resistance-breaking gene of the brown planthopper Nilaparvata lugens [J]. Proceedings of the Royal Society B: Biological Sciences, 2014, 281(1787): 20140726. DOI:10.1098/rspb.2014.0726
doi: 10.1098/rspb.2014.0726
[40]   JING S J, ZHNG L, MA Y H, et al. Genome-wide mapping of virulence in brown planthopper identifies loci that break down host plant resistance[J]. PLoS ONE, 2014, 9(6): e98911. DOI:10.1371/journal.pone.0098911
doi: 10.1371/journal.pone.0098911
[41]   XIAO Y T, WANG Q, ERB M, et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field[J]. Ecology Letters, 2012, 15(10): 1130-1139. DOI:10.1111/j.1461-0248.2012.01835.x
doi: 10.1111/j.1461-0248.2012.01835.x
[42]   WANG P, LOU Y G. Screening and field evaluation of synthetic plant volatiles as attractants for Anagrus nilaparvatae Pang et Wang, an egg parasitoid of rice planthoppers[J]. Chinese Journal of Applied Entomology, 2013, 50(2): 431-440. DOI:10.7679/j.issn.2095-1353.2013.059
doi: 10.7679/j.issn.2095-1353.2013.059
[43]   LI C Z, SUN H, GAO Q, et al. Host plants alter their volatiles to help a solitary egg parasitoid distinguish habitats with parasitized hosts from those without[J]. Plant, Cell and Environment, 2020, 43(7): 1740-1750. DOI:10.1111/pce.13747
doi: 10.1111/pce.13747
[44]   CAO T T, BACKUS E A, LOU Y G, et al. Feeding-induced interactions between Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae): effects on feeding behavior and honeydew excretion[J]. Environmental Entomology, 2013, 42(5): 987-997. DOI:10.1603/EN13080
doi: 10.1603/EN13080
[45]   CAO T T, LÜ J, LOU Y G, et al. Feeding-induced interactions between two rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae): effects on feeding and honeydew excretion[J]. Environmental Entomology, 2013, 42(6): 1281-1291. DOI:10.1603/EN12171
doi: 10.1603/EN12171
[46]   HU X Y, SU S L, LIU Q S, et al. Caterpillar-induced rice volatiles provide costless enemy-free space for the offspring of the brown planthopper[J]. eLife, 2020, 9: e55421. DOI:10.7554/eLife.55421
doi: 10.7554/eLife.55421
[47]   LIU Q S, HU X Y, SU S L, et al. Cooperative herbivory between two important pests of rice[J]. Nature Communications, 2021, 12(1): 6772. DOI:10.1038/s41467-021-27021-0
doi: 10.1038/s41467-021-27021-0
[48]   王端,姚香梅,叶健.根际微生物-植物-病毒-介体昆虫多元互作研究进展[J].生物技术通报,2018,34(2):54-65. DOI:10.13560/j.cnki.biotech.bull.1985.2017-1080
WANG D, YAO X M, YE J. Research progress on multipartite interactions among rhizosphere microbe-plants-virus-vector insect[J]. Biotechnology Bulletin, 2018, 34(2): 54-65. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2017-1080
[49]   孙付森.RGSV侵染水稻后挥发物的变化对褐飞虱选择行为的影响[D].福州:福建农林大学,2015.
SUN F S. The behavioral response of Nilaparvata lugens to induced volatiles of rice infected by RGSV[D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese with English abstract)
[50]   ZHAO Y L, CAO X, ZHONG W H, et al. A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission[J]. Molecular Plant, 2022, 15(4): 689-705. DOI:10.1016/j.molp.2022.01.006
doi: 10.1016/j.molp.2022.01.006
[51]   GONG J T, LI Y J, LI T P, et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection[J]. Current Biology, 2020, 30(24): 4837-4845. DOI:10.1016/j.cub.2020.09.033
doi: 10.1016/j.cub.2020.09.033
[52]   陈金勇.水稻介导对稻瘟病菌和褐飞虱之间相互作用的影响[D].福州:福建农林大学,2010.
CHEN J Y. Rice mediated interactions between rice blast fungus and brown planthopper[D]. Fuzhou: Fujian Agriculture and Forestry University, 2010. (in Chinese with English abstract)
[53]   HU X F, CHENG C, LUO F, et al. Effects of different fertilization practices on the incidence of rice pests and diseases: a three-year case study in Shanghai, in subtropical southeastern China[J]. Field Crops Research, 2016, 196: 33-50. DOI:10.1016/j.fcr.2016.06.004
doi: 10.1016/j.fcr.2016.06.004
[54]   WU J C, GE L Q, LIU F, et al. Pesticide-induced planthopper population resurgence in rice cropping systems[J]. Annual Review of Entomology, 2020, 65: 409-429. DOI:10.1146/annurev-ento-011019-025215
doi: 10.1146/annurev-ento-011019-025215
[55]   ZHU P Y, ZHENG X S, XU H X, et al. Nitrogen fertilization of rice plants improves ecological fitness of an entomophagous predator but dampens its impact on prey, the rice brown planthopper, Nilaparvata lugens [J]. Journal of Pest Science, 2020, 93(2): 747-755. DOI:10.1007/s10340-019-01174-w
doi: 10.1007/s10340-019-01174-w
[56]   ZHU P Y, ZHENG X S, XU H X, et al. Nitrogen fertilizer promotes the rice pest Nilaparvata lugens via impaired natural enemy, Anagrus flaveolus, performance[J]. Journal of Pest Science, 2020, 93(2): 757-766. DOI:10.1007/s10340-019-01177-7
doi: 10.1007/s10340-019-01177-7
[57]   JIANG L H, BONKOWSKI M, LUO L, et al. Combined addition of chemical and organic amendments enhances plant resistance to aboveground herbivores through increasing microbial abundance and diversity[J]. Biology and Fertility of Soils, 2020, 56(7): 1007-1022. DOI:10.1007/s00374-020-01473-w
doi: 10.1007/s00374-020-01473-w
[58]   WANG W W, ZHOU P Y, MO X C, et al. Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field[J]. PNAS, 2020, 117(22): 12017-12028. DOI:10.1073/pnas.2003742117
doi: 10.1073/pnas.2003742117
[59]   孙星星,王凯,李红阳,等.江苏沿海农区水稻病虫害绿色防控技术研究进展[J].江苏农业科学,2018,46(14):6-8. DOI:10.15889/j.issn.1002-1302.2018.14.002
SUN X X, WANG K, LI H Y, et al. Research progress on green prevention and control technology of rice diseases and insect pests in coastal agricultural areas of Jiangsu Province[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 6-8. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2018.14.002
[1] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[2] SONG Qianqian, CHEN Wenwen, TANG Jianjun, YU Zhenxing, DING Lilian, LIU Shijun, REN Minglei, CHEN Xin. Effects of rhizospheric factors on plant neighbor effects along a salinity gradient[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 601-609.