Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 403-414    DOI: 10.3785/j.issn.1008-9209.2021.08.101
Reviews     
Research advances on mechanisms and preventions of the medicinal plants’ continuous cropping obstacles from the perspective of rhizosphere microecology
Yuting QU1(),Qianqian ZHANG1,Yefei YU2,Sayikal DUYXANALE1,Linlin CAI1,Sujiong ZHANG3,Yongfu LI1,Yongchun LI1()
1.State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
2.Administration Bureau of Dapanshan National Nature Reserve, Jinhua 322300, Zhejiang, China
3.Institute of Traditional Chinese Medicine Industry Innovation of Pan’an County, Jinhua 322300, Zhejiang, China
Download: HTML   HTML (   PDF(3930KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The ability of the rhizosphere micro-ecosystem to resist pathogenic microorganisms declined, induced by different dose-effect relations in the “plant-soil-microbe” system, culminating in yield loss and quality deterioration. This paper reviewed the causes of continuous cropping obstacles of medicinal plants and the strategies to mitigate these obstacles from the perspective of rhizosphere microecology. Then we summarized the existing problems in the field and recommended directions for future research. Continuous cropping leads to changes in the complicated interactions between the medicinal plant’s roots and their exudates, as well as the microbial population and community structure, which in turn leads to the imbalance of the original rhizosphere micro-ecosystem and benefits soil-borne diseases. Therefore, based on the interactions between medicinal plants and the rhizosphere environment, this paper proposed various mitigation strategies, including plant breeding, soil microbial community assembly and so on. These strategies could serve to maintain the balance of the soil ecosystem, and consequently plant health, and ultimately improve the yield and quality of medicinal plants. This study recommended that researchers who worked on the continuous cropping obstacles focused on the interactions and mechanisms among plant-soil-microbe which are mediated by the plant-pathogen competition, to provide guidance for the effective management of continuous cropping control and the healthy development of medicinal plants in the future.



Key wordsmedicinal plants      continuous cropping obstacles      rhizosphere microecology      mitigation strategies     
Received: 10 August 2021      Published: 03 September 2022
CLC:  S 181  
Corresponding Authors: Yongchun LI     E-mail: qyt0131@163.com;ycli@zafu.edu.cn
Cite this article:

Yuting QU,Qianqian ZHANG,Yefei YU,Sayikal DUYXANALE,Linlin CAI,Sujiong ZHANG,Yongfu LI,Yongchun LI. Research advances on mechanisms and preventions of the medicinal plants’ continuous cropping obstacles from the perspective of rhizosphere microecology. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 403-414.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.08.101     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/403


根际微生态视角下药用植物连作障碍机制和缓解措施研究进展

“植物-土壤-微生物”系统中各种量效关系在连作过程中发生变化,导致根际微生态系统抵御病原微生物的能力降低,已成为制约药用植物品质和产量的关键因素。本文从根际微生态的角度综述了药用植物连作障碍产生的原因及缓解对策,概述该领域存在的问题,并对未来的研究方向进行了展望。连作后,药用植物根系及其分泌物与微生物数量、群落结构之间的复杂相互作用发生改变,导致原有根际微生态系统失衡并有利于土传病害的发生。采用植物育种、微生物群落组装等缓解措施协调植物-土壤-微生物组的互作关系,以达到维持土壤生态系统平衡和植物健康的目的,最终提升药用植物的产量与品质。本文建议药用植物连作障碍研究应该重视以植物-病原体关系为主导的根际微生态综合作用过程与机制,为未来药用植物的连作障碍治理和健康发展提供参考。


关键词: 药用植物,  连作障碍,  根际微生态,  调控措施 
Fig. 1 Effects of rhizosphere microorganisms on medicinal plant health
Fig. 2 Comprehensive effects of rhizosphere microecology on continuous cropping obstacles of medicinal plants
Fig. 3 Plant-microbial immunity defense system
Fig. 4 Control measures to alleviate continuous cropping obstacles
[1]   吴红淼,林文雄.药用植物连作障碍研究评述和发展透视[J].中国生态农业学报(中英文),2020,28(6):775-793. DOI:10.13930/j.cnki.cjea.190760
WU H M, LIN W X. A commentary and development perspective on the consecutive monoculture problems of medicinal plants[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 775-793. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.190760
[2]   PERVAIZ Z H, IQBAL J, ZHANG Q M, et al. Continuous cropping alters multiple biotic and abiotic indicators of soil health[J]. Soil Systems, 2020, 4(4): 59. DOI:10.3390/soilsystems4040059
doi: 10.3390/soilsystems4040059
[3]   TRIVEDI P, LEACH J E, TRIGE S G, et al. Plant‍‒microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1
doi: 10.1038/s41579-020-0412-1
[4]   ZHANG J, COAKER G, ZHOU J M, et al. Plant immune mechanisms: from reductionistic to holistic points of view[J]. Molecular Plant, 2020, 13(10): 1358-1378. DOI:10.1016/j.molp.2020.09.007
doi: 10.1016/j.molp.2020.09.007
[5]   WEI Z, FRIMAN V P, POMMIER T, et al. Rhizosphere immunity: targeting the underground for sustainable plant health management[J]. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 317-328. DOI:10.15302/J-PHASE-2020346
doi: 10.15302/J-PHASE-2020346
[6]   CANARINI A, WANEK W, MERCHANT A, et al. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli[J]. Frontiers in Plant Science, 2019, 10: 157. DOI:10.3389/fpls.2019.00157
doi: 10.3389/fpls.2019.00157
[7]   VIVES-PERIS V, DE OLLAS C, GOMEZ-CADENAS A, et al. Root exudates: from plant to rhizosphere and beyond[J]. Plant Cell Reports, 2020, 39: 3-17. DOI:10.1007/s00299-019-02447-5
doi: 10.1007/s00299-019-02447-5
[8]   WANG N Q, KONG C H, WANG P, et al. Root exudate signals in plant-plant interactions[J]. Plant, Cell and Environment, 2021, 44(4): 1044-1058. DOI:10.1111/pce.13892
doi: 10.1111/pce.13892
[9]   PANTIGOSO H A, HE Y, DILEGGE M J, et al. Methods for root exudate collection and analysis[J]. The Plant Microbiome, 2021, 2232: 291-303. DOI:10.1007/978-1-0716-1040-4_22
doi: 10.1007/978-1-0716-1040-4_22
[10]   黄钰芳,张恩和,张新慧,等.兰州百合连作土壤水浸液自毒作用研究[J].西北农林科技大学学报(自然科学版),2020,48(7):84-93. DOI:10.13207/j.cnki.jnwafu.2020.07.010
HUANG Y F, ZHANG E H, ZHANG X H, et al. Autotoxicity of water extracts from continuous cropping soil of Lilium davidii var. unicolor Salisb[J]. Journal of Northwest A‍&‍F University (Natural Science Edition), 2020, 48(7): 84-93. (in Chinese with English abstract)
doi: 10.13207/j.cnki.jnwafu.2020.07.010
[11]   ZHENG F, CHEN L, GAO J M, et al. Identification of autotoxic compounds from Atractylodes macrocephala Koidz and preliminary investigations of their influences on immune system[J]. Journal of Plant Physiology, 2018, 230: 33-39. DOI:10.1016/j.jplph.2018.08.006
doi: 10.1016/j.jplph.2018.08.006
[12]   YANG M, CHUAN Y C, GUO C W, et al. Panax notoginseng root cell death caused by the autotoxic ginsenoside Rg1 is due to over-accumulation of ROS, as revealed by transcriptomic and cellular approaches[J]. Frontiers in Plant Science, 2018, 9: 264. DOI:10.3389/fpls.2018.00264
doi: 10.3389/fpls.2018.00264
[13]   WU H M, WU L K, ZHU Q, et al. The role of organic acids on microbial deterioration in the Radix pseudostellariae rhizosphere under continuous monoculture regimes[J].Scientific Reports, 2017, 7(1): 3497. DOI:10.1038/s41598-017-03793-8
doi: 10.1038/s41598-017-03793-8
[14]   ZHANG Y, ZHENG Y, XIA P G, et al. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties[J]. Scientific Reports, 2019, 9: 13205. DOI:10.1038/s41598-019-49625-9
doi: 10.1038/s41598-019-49625-9
[15]   ZHU B, WU J J, JI Q Y, et al. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping[J]. PeerJ, 2020, 8: e8905. DOI:10.7717/peerj.8905
doi: 10.7717/peerj.8905
[16]   LIU S, WANG Z Y, NIU J F, et al. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng)[J]. Plant and Soil, 2021, 463(1/2): 427-446. DOI:10.1007/s11104-021-04911-2
doi: 10.1007/s11104-021-04911-2
[17]   ZHANG J G, FAN S H, QIN J, et al. Changes in the microbiome in the soil of an American ginseng continuous plantation[J]. Frontiers in Plant Science, 2020, 11: 572199. DOI:10.3389/fpls.2020.572199
doi: 10.3389/fpls.2020.572199
[18]   WANG Q X, SUN H, LI M J, et al. Different age-induced changes in rhizosphere microbial composition and function of Panax ginseng in transplantation mode[J]. Frontiers in Plant Science, 2020, 11: 563240. DOI:10.3389/fpls.2020.563240
doi: 10.3389/fpls.2020.563240
[19]   LUO L F, GUO C W, WANG L T, et al. Negative plant-soil feedback driven by re-assemblage of the rhizosphere microbiome with the growth of Panax notoginseng [J]. Frontiers in Microbiology, 2019, 10: 1597. DOI:10.3389/fmicb.2019.01597
doi: 10.3389/fmicb.2019.01597
[20]   LIU N, SHAO C, SUN H, et al. Arbuscular mycorrhizal fungi biofertilizer improves American ginseng (Panax quinquefolius L.) growth under the continuous cropping regime[J]. Geoderma, 2020, 363: 114155. DOI:10.1016/j.geoderma.2019.114155
doi: 10.1016/j.geoderma.2019.114155
[21]   BAO Y, QI B, HUANG W, et al. The fungal community in non-rhizosphere soil of Panax ginseng are driven by different cultivation modes and increased cultivation periods[J]. PeerJ, 2020, 8: e9930. DOI:10.7717/peerj.9930
doi: 10.7717/peerj.9930
[22]   ZHAO M L, ZHAO J, YUAN J, et al. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell and Environment, 2021, 44(2): 613-628. DOI:10.1111/pce.13928
doi: 10.1111/pce.13928
[23]   ZHALNINA K, LOUIE K B, HAO Z, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3(4): 470-480. DOI:10.1038/s41564-018-0129-3
doi: 10.1038/s41564-018-0129-3
[24]   LUO L F, YANG L, YAN Z X, et al. Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization[J]. Plant and Soil, 2020, 455: 139-153. DOI:10.1007/s11104-020-04663-5
doi: 10.1007/s11104-020-04663-5
[25]   ZHANG B, WESTON L A, LI M J, et al. Rehmannia glutinosa replant issues: root exudate-rhizobiome interactions clearly influence replant success[J]. Frontiers in Microbiology, 2020, 11: 1413. DOI:10.3389/fmicb.2020.01413
doi: 10.3389/fmicb.2020.01413
[26]   蒋靖怡,杨婉珍,康传志,等.中药材栽培地土壤肥力评价[J].中国中药杂志,2018,43(4):847-852. DOI:10.19540/j.cnki.cjcmm.20180105.003
JIANG J Y, YANG W Z, KANG C Z, et al. Assessment of soil fertility for cultivation of Chinese herbal medicines[J]. China Journal of Chinese Materia Medica, 2018, 43(4): 847-852. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20180105.003
[27]   DE LA FUENTE CANTO C, SIMONIN M, KING E, et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness[J]. The Plant Journal, 2020, 103(3): 951-964. DOI:10.1111/tpj.14781
doi: 10.1111/tpj.14781
[28]   LI H, BOELSCHER T, WINNICK M, et al. Simple plant and microbial exudates destabilize mineral-associated organic matter via multiple pathways[J]. Environmental Science and Technology, 2021, 55(5): 3389-3398. DOI:10.1021/acs.est.0c04592
doi: 10.1021/acs.est.0c04592
[29]   ZHU H, BING H J, WU Y H, et al. Low molecular weight organic acids regulate soil phosphorus availability in the soils of subalpine forests, eastern Tibetan Plateau[J]. CATENA, 2021, 203: 105328. DOI:10.1016/j.catena.2021.105328
doi: 10.1016/j.catena.2021.105328
[30]   HAN Q Q, WU Y N, GAO H J, et al. Improved salt tolerance of medicinal plant Codonopsis pilosula by Bacillus amyloliquefaciens GB03[J]. Acta Physiologiae Plantarum, 2017, 39(1): 35. DOI:10.1007/s11738-016-2325-1
doi: 10.1007/s11738-016-2325-1
[31]   VILLALOBOS-ESCOBEDO J M, ESPARZA-REYNOSO S, PELAGIO-FLORES R, et al. The fungal NADPH oxidase is an essential element for the molecular dialog between Trichoderma and Arabidopsis [J]. The Plant Journal, 2020, 103(6): 2178-2192. DOI:10.1111/tpj.14891
doi: 10.1111/tpj.14891
[32]   LI C W, CHEN G Z, ZHANG J L, et al. The comprehensive changes in soil properties are continuous cropping obstacles associated with American ginseng (Panax quinquefolius) cultivation[J]. Scientific Reports, 2021, 11: 5068. DOI:10.1038/s41598-021-84436-x
doi: 10.1038/s41598-021-84436-x
[33]   韦中,沈宗专,杨天杰,等.从抑病土壤到根际免疫:概念提出与发展思考[J].土壤学报,2021,58(4):814-824. DOI:10.11766/trxb202003230038
WEI Z, SHEN Z Z, YANG T J, et al. From suppressive soil to rhizosphere immunity: towards an ecosystem thinking for soil-borne pathogen control[J]. Acta Pedologica Sinica, 2021, 58(4): 814-824. (in Chinese with English abstract)
doi: 10.11766/trxb202003230038
[34]   朱永官,彭静静,韦中,等.土壤微生物组与土壤健康[J].中国科学(生命科学),2021,51(1):1-11. DOI:‍10.1360/SSV-2020-0320
ZHU Y G, PENG J J, WEI Z, et al. Linking the soil microbiome to soil health[J]. Scientia Sinica (Vitae), 2021, 51(1): 1-11. (in Chinese with English abstract)
doi: ?10.1360/SSV-2020-0320
[35]   ZHAO J, LI Y L, WANG B Y, et al. Comparative soil microbial communities and activities in adjacent Sanqi ginseng monoculture and maize-Sanqi ginseng systems[J]. Applied Soil Ecology, 2017, 120: 89-96. DOI:10.1016/j.apsoil.2017.08.002
doi: 10.1016/j.apsoil.2017.08.002
[36]   LI B Z, ZHANG Q Q, CHEN Y H, et al. Different crop rotation systems change the rhizosphere bacterial community structure of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao[J]. Applied Soil Ecology, 2021, 166: 104003. DOI:10.1016/j.apsoil.2021.104003
doi: 10.1016/j.apsoil.2021.104003
[37]   ZHOU L J, WANG Y J, XIE Z K, et al. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor [J]. Journal of Basic Microbiology, 2018, 58(10): 892-901. DOI:10.1002/jobm.201800163
doi: 10.1002/jobm.201800163
[38]   张义杰,张帅,粟珊,等.石林县三七仿生种植对根际土壤微生物多样性的影响[J].云南农业大学学报(自然科学),2021,36(3):487-493. DOI:10.12101/j.issn.1004-390X(n).202003006
ZHANG Y J, ZHANG S, SU S, et al. The effect of bionic cultivation on Panax notoginseng rhizosphere microorganism diversity in Shilin County[J]. Journal of Yunnan Agricultural University (Natural Science), 2021, 36(3): 487-493. (in Chinese with English abstract)
doi: 10.12101/j.issn.1004-390X(n).202003006
[39]   CUI X W, ZHANG Y Z, GAO J S, et al. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China[J]. Scientific Reports, 2018, 8: 16554. DOI:10.1038/s41598-018-34685-0
doi: 10.1038/s41598-018-34685-0
[40]   WANG X, WHALLEY W R, MILLER A J, et al. Sustainable cropping requires adaptation to a heterogeneous rhizosphere[J]. Trends in Plant Science, 2020, 25(12): 1194-1202. DOI:10.1016/j.tplants.2020.07.006
doi: 10.1016/j.tplants.2020.07.006
[41]   LI Y, FANG F, WEI J L, et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment[J]. Scientific Reports, 2019, 9: 12014. DOI:10.1038/s41598-019-48620-4
doi: 10.1038/s41598-019-48620-4
[42]   HUANG W, LIU Z, ZHOU C Y, et al. Enhancement of soil ecological self-repair using a polymer composite material[J]. CATENA, 2020, 188: 104443. DOI:10.1016/j.catena.‍2019.104443
doi: 10.1016/j.catena.?2019.104443
[43]   ZHAO L Y, GUAN H L, WANG R, et al. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata [J]. Journal of Soil Science and Plant Nutrition, 2021, 21: 1318-1328. DOI:10.1007/s42729-021-00442-y
doi: 10.1007/s42729-021-00442-y
[44]   WANG W L, XU J F, FANG H Y, et al. Advances and challenges in medicinal plant breeding[J]. Plant Science, 2020, 298: 110573. DOI:10.1016/j.plantsci.2020.110573
doi: 10.1016/j.plantsci.2020.110573
[45]   DEY A. CRISPR/Cas genome editing to optimize pharmacologically active plant natural products[J]. Pharmacological Research, 2021, 164: 105359. DOI:10.1016/j.phrs.2020.105359
doi: 10.1016/j.phrs.2020.105359
[46]   TYAGI S, KUMAR R, KUMAR V, et al. Engineering disease resistant plants through CRISPR-Cas9 technology[J]. GM Crops and Food, 2021, 12(1): 125-144. DOI:10.1080/21645698.2020.1831729
doi: 10.1080/21645698.2020.1831729
[47]   欧小宏,刘迪秋,王麟猛,等.土壤熏蒸处理对连作三七生长发育及土壤理化性状的影响[J].中国现代中药,2018,20(7):842-849. DOI:10.13313/j.issn.1673-4890.20180308002
OU X H, LIU D Q, WANG L M, et al. Effects of soil fumigant chloropicrin on the growth development and soil physico-chemical properties of continuous cropping Panax notoginseng [J]. Modern Chinese Medicine, 2018, 20(7): 842-849. (in Chinese with English abstract)
doi: 10.13313/j.issn.1673-4890.20180308002
[48]   霍云龙,王飞,李艳军,等.高温闷棚技术防治茄子黄萎病研究[J].福建农业学报,2021,36(5):595-601. DOI:10.19303/j.issn.1008-0384.2021.05.014
HUO Y L, WANG F, LI Y J, et al. High-temperature stuffy chamber for controlling verticillium wilt on eggplants[J]. Fujian Journal of Agricultural Sciences, 2021, 36(5): 595-601. (in Chinese with English abstract)
doi: 10.19303/j.issn.1008-0384.2021.05.014
[49]   LIU L L, KONG J J, CUI H L, et al. Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation[J]. Biological Control, 2016, 101: 103-113. DOI:10.1016/j.biocontrol.2016.06.011
doi: 10.1016/j.biocontrol.2016.06.011
[50]   NIU D D, LIU H X, JIANG C H, et al. The plant growth‍-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Molecular Plant-Microbe Interactions, 2011, 24(5): 533-542. DOI:10.1094/MPMI-09-10-0213
doi: 10.1094/MPMI-09-10-0213
[51]   RODRIGUEZ M, TORRES M, BLANCO L, et al. Plant growth‍-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6[J]. Scientific Reports, 2020, 10(1): 4121. DOI:10.1038/s41598-020-61084-1
doi: 10.1038/s41598-020-61084-1
[52]   IGIEHON N O, BABALOLA O O. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi[J]. Applied Microbiology and Biotechnology, 2017, 101(12): 4871-4881. DOI:10.1007/s00253-017-8344-z
doi: 10.1007/s00253-017-8344-z
[53]   肖蓉,邓舒,赵菁,等.自毒物质对羟基苯甲酸降解细菌ZH2的分离与应用[J].农学学报,2021,11(7):84-91. DOI:10.11923/j.issn.2095-4050.cjas2020-0115
XIAO R, DENG S, ZHAO J, et al. An autotoxicity p-hydroxybenzoic acid-degrading strain ZH2: isolation and application[J]. Journal of Agriculture, 2021, 11(7): 84-91. (in Chinese with English abstract)
doi: 10.11923/j.issn.2095-4050.cjas2020-0115
[1] ZHANG Yong song,CHAI Ru shan,FU Lili,LIU Li juan,DONG Hui fen. Greenhouse gas emissions from major agricultural activities in China and corresponding mitigation strategies .[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 97-107.