Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 129-140    DOI: 10.3785/j.issn.1008-9209.2021.12.301
Agricultural engineering     
Phenotyping analysis of rice lodging based on a nondestructive mechanical platform
Mengqi Lü1,2(),Sunghwan JUNG3,Zhihong MA1,2,Liang WAN1,2,Dawei SUN4,Haiyan CEN1,2()
1.State Key Laboratory of Modern Optical Instrumentation, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
3.Department of Biological and Environmental Engineering, Cornell University, New York 14853, USA
4.Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
Download: HTML   HTML (   PDF(4298KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Traditional rice lodging measurements are time-consuming and destructive to rice plants. This study thus developed an easy-to-implement and nondestructive mechanical platform for phenotyping analysis of rice lodging, which can monitor the lodging-resistant characteristics of rice in different growth periods. The lodging measurements were conducted at the jointing stage, booting stage and heading stage from August 15th to September 21st, 2019. The force and displacement were measured from two different directions using the lodging measuring platform with a force sensor, which were used to calculate the dynamic bending stiffness coefficient (KEI) of rice. Meanwhile, RGB images were collected from the mechanical platform, which were applied to calculate the projected area and the center of force (CoF). The results showed that the KEI values of lodging-resistant cultivars (Beidao 1 and Shennong 9816) were different from those of lodging cultivars (Yueguang and Qiuguang), which can reflect rice’s lodging resistance in the growth period. In addition, we found that the average distances between CoF and the root of lodging cultivars within the RGB images were larger than those of lodging-resistant cultivars and easily led to rice instability. This study can provide valuable information for rice lodging monitoring and precision breeding.



Key wordsrice lodging      crop phenotype      mechanical platform      RGB images      dynamic bending stiffness coefficient     
Published: 25 February 2023
CLC:  S24  
Fund:  Key R&D Program of Guangdong Province(2019B020216001);Key R&D Program of Zhejiang Province(2020C02002)
Corresponding Authors: Haiyan CEN     E-mail: 22013013@zju.edu.cn;hycen@zju.edu.cn
About author: Lü Mengqi (https://orcid.org/0000-0001-9202-5819), E-mail: 22013013@zju.edu.cn
Cite this article:

Mengqi Lü, Sunghwan JUNG, Zhihong MA, Liang WAN, Dawei SUN, Haiyan CEN. Phenotyping analysis of rice lodging based on a nondestructive mechanical platform. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 129-140.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.12.301     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/129


基于无损力学平台的水稻倒伏表型分析(英文)

针对传统水稻倒伏测量费时费力且对水稻植株具有破坏性的问题,本研究构建了一款操作简单且无损的力学平台用于水稻倒伏表型分析,可监测水稻在不同生育期的抗倒伏特性。本试验中水稻倒伏监测时间为2019年8月15日—9月21日,包含水稻生长过程中的拔节期、孕穗期和抽穗期。通过无损力学平台中的力传感器获取水稻倒伏测量过程中的力与位移,从而计算水稻动态抗弯刚度系数(KEI),同时通过力学平台采集RGB图像用于计算水稻植株投影面积和受力中心(CoF)。结果表明:抗倒伏品种(北稻1号、神农9816)与倒伏品种(越光、秋光)的KEI存在差异,反映了水稻生育期内的抗倒伏特性。RGB图像中倒伏品种水稻的受力中心与植株底部的距离大于抗倒伏品种,易失稳。本研究为水稻倒伏监测和精准育种提供了技术支撑。


关键词: 水稻倒伏,  作物表型,  力学平台,  可见光图像,  动态抗弯刚度系数 
Fig. 1 Lodging measuring platformA. A stepper motor controller and two slide rails (the vertical slide’s range is 1 m, and its accuracy is 1 mm. The horizontal slide’s range is 0.3 m, and its accuracy is 0.1 mm); B. Relative positions of the camera, force sensor and rice plant.
Fig. 2 Two vertical positions of rice plantsA. Bottom position (the distance between force sensor and rice root was 70 mm); B. Top position (the distance between force sensor and rice root was 200 mm).
Fig. 3 Two horizontal positions of rice plantsA. Normal position (the RGB camera faced the largest angle between branches and stalk of rice plant); B. Lateral position (the rice plant had been rotated 90° clockwise on the basis of the normal position).
Fig. 4 Example of raw data obtained from the experiment
Fig. 5 Calibration curve for the relationship between the voltage of force sensor and the horizontal state force (FS ) received
Fig. 6 Center of force (CoF) when the rice plants are at two different states
Fig. 7 Average values of dynamic bending stiffness coefficient (KEI) of different rice cultivars at different datesA. The force was applied at the bottom when the rice plant was in normal position; B. The force was applied at the bottom when the rice plant was in lateral position; C. The force was applied at the top when the rice plant was in normal position; D. The force was applied at the top when the rice plant was in lateral position.
Fig. 8 Projected area and center of force (CoF) when the rice is under stress at the initial booting stage (August 22nd, 2019) after 22 d of transplantingThe red box represents the smallest circumscribed rectangle of rice sample. The white line represents the CoF of rice sample after being stressed. The force sensor was placed at the bottom, and it pushed rice stalk up to 30 mm in the forward direction.
Rice cultivar

Sample

No.

Distance between

CoF and rice root/

mm

Projected area/m2

Lodging-resistant

cultivar

BD-18790.017
BD-27900.023
BD-37370.021
SN-17940.024
SN-27780.019
SN-37670.021
Lodging cultivarYG-18390.024
YG-27710.020
YG-38090.021
QG-17790.028
QG-28710.031
QG-38140.030
Table 1 Distance between center of force (CoF) and rice root and projected area at the initial booting stage (August 22nd, 2019)
Fig. 9 Comparison of mechanical parameters between lodging-resistant and lodging rice cultivars at the initial booting stage (August 22nd, 2019)
[1]   WU W, MA B L. A new method for assessing plant lodging and the impact of management options on lodging in canola crop production[J]. Scientific Reports, 2016, 6: 31890. DOI: 10.1038/srep31890
doi: 10.1038/srep31890
[2]   AHMAD I, KAMRAN M, GUO Z Y, et al. Effects of uniconazole or ethephon foliar application on culm mechanical strength and lignin metabolism, and their relationship with lodging resistance in winter wheat[J]. Crop & Pasture Science, 2020, 71(1): 12-22. DOI: 10.1071/Cp19149
doi: 10.1071/Cp19149
[3]   MUTHAYYA S, SUGIMOTO J D, MONTGOMERY S, et al. An overview of global rice production, supply, trade, and consumption[J]. Annals of the New York Academy of Sciences, 2014, 1324(1): 7-14. DOI: 10.1111/nyas.12540
doi: 10.1111/nyas.12540
[4]   WENG F, ZHANG W J, WU X R, et al. Impact of low-temperature, overcast and rainy weather during the reproduc-tive growth stage on lodging resistance of rice[J]. Scientific Reports, 2017, 7: 46596. DOI: 10.1038/srep46596
doi: 10.1038/srep46596
[5]   JIANG M J, YAMAMOTO E, YAMAMOTO T, et al. Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193[J]. Plant Growth Regulation, 2019, 87(2): 267-276. DOI: 10.1007/s10725-018-0468-3
doi: 10.1007/s10725-018-0468-3
[6]   OKUNO A, HIRANO K, ASANO K, et al. New approach to increasing rice lodging resistance and biomass yield through the use of high gibberellin producing varieties[J]. PLoS ONE, 2014, 9(2): e86870. DOI: 10.1371/journal.pone.0086870
doi: 10.1371/journal.pone.0086870
[7]   PEAKE A S, BELL K L, FISCHER R A, et al. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: optimising plant growth regulator use, N application timing, row spacing and sowing date[J]. Frontiers in Plant Science, 2020, 11: 401. DOI: 10.3389/fpls.2020.00401
doi: 10.3389/fpls.2020.00401
[8]   ÜNAN R, SEZER İ, ŞAHİN M, et al. Control of lodging and reduction in plant length in rice (Oryza sativa L.) with the treatment of trinexapac-ethyl and sowing density[J]. Turkish Journal of Agriculture and Forestry, 2013, 37(3): 257-264. DOI: 10.3906/tar-1207-72
doi: 10.3906/tar-1207-72
[9]   彭世彰,张正良,庞桂斌.控制灌溉条件下寒区水稻茎秆抗倒伏力学评价及成因分析[J].农业工程学报,2009,25(1):6-10.
PENG S Z, ZHANG Z L, PANG G B. Mechanical evaluation and cause analysis of rice-stem lodging resistance under controlled irrigation in cold region[J]. Transactions of the CSAE, 2009, 25(1): 6-10. (in Chinese with English abstract)
[10]   ZHAO Y C, KONG D G, HUO J W. Analysis of blue honeysuckle binding force during harvest period[J]. International Journal of Hybrid Information Technology, 2016, 9(8): 399-408. DOI: 10.14257/ijhit.2016.9.8.35
doi: 10.14257/ijhit.2016.9.8.35
[11]   袁志华,赵安庆,苏宗伟,等.水稻茎秆抗倒伏的力学分析[J].生物数学学报,2003,18(2):234-237.
YUAN Z H, ZHAO A Q, SU Z W, et al. Dynamic analysis of rice stem lodger resistance[J]. Journal of Biomathematics, 2003, 18(2): 234-237. (in Chinese with English abstract)
[12]   CROOK M J, ENNOS A R. Stem and root characteristics associated with lodging resistance in 4 winter-wheat cultivars[J]. Journal of Agricultural Science, 1994, 123: 167-174. DOI: 10.1017/S0021859600068428
doi: 10.1017/S0021859600068428
[13]   BAKER C J, BERRY P M, SPINK J H, et al. A method for the assessment of the risk of wheat lodging[J]. Journal of Theoretical Biology, 1998, 194(4): 587-603. DOI: 10.1006/jtbi.1998.0778
doi: 10.1006/jtbi.1998.0778
[14]   BLÖSCH R, PLAZA-WÜTHRICH S, DE REUILLE P B, et al. Panicle angle is an important factor in tef lodging tolerance[J]. Frontiers in Plant Science, 2020, 11: 61. DOI: 10.3389/fpls.2020.00061
doi: 10.3389/fpls.2020.00061
[15]   袁志华,冯宝萍,赵安庆,等.作物茎秆抗倒伏的力学分析及综合评价探讨[J].农业工程学报,2002,18(6):30-31. DOI:10.3321/j.issn:1002-6819.2002.06.008
YUAN Z H, FENG B P, ZHAO A Q, et al. Dynamic analysis and comprehensive evaluation of crop-stem lodging resistance[J]. Transactions of the CSAE, 2002, 18(6): 30-31. (in Chinese with English abstract). DOI:10.3321/j.issn:1002-6819.2002.06.008
doi: 10.3321/j.issn:1002-6819.2002.06.008
[16]   MA D L, XIE R Z, LIU X, et al. Lodging-related stalk characteristics of maize varieties in China since the 1950s[J]. Crop Science, 2014, 54(6): 2805-2814. DOI: 10.2135/cropsci2014.04.0301
doi: 10.2135/cropsci2014.04.0301
[17]   ROBERTSON D J, LEE S Y, JULIAS M, et al. Maize stalk lodging: flexural stiffness predicts strength[J]. Crop Science, 2016, 56(4): 1711-1718. DOI: 10.2135/cropsci2015.11.0665
doi: 10.2135/cropsci2015.11.0665
[18]   CHEN S F, DANAO M G C, BROWN P J. Stalk strength and sugar content of 55 dual-purpose sorghum inbreds[J]. Applied Engineering in Agriculture, 2015, 31(3): 489-496. DOI: 10.13031/aea.31.10559
doi: 10.13031/aea.31.10559
[19]   ZHOU F, HUANG J L, LIU W Y, et al. Multiscale simulation of elastic modulus of rice stem[J]. Biosystems Engineering, 2019, 187: 96-113. DOI: 10.1016/j.biosystemseng.2019.09.003
doi: 10.1016/j.biosystemseng.2019.09.003
[20]   SEKHON R S, JOYNER C N, ACKERMAN A J, et al. Stalk bending strength is strongly associated with maize stalk lodging incidence across multiple environments[J]. Field Crops Research, 2020, 249: 107737. DOI: 10.1016/j.fcr.2020.107737
doi: 10.1016/j.fcr.2020.107737
[21]   SHAH A N, TANVEER M, REHMAN A UR, et al. Lodging stress in cereal-effects and management: an overview[J]. Environmental Science and Pollution Research, 2017, 24(6): 5222-5237. DOI: 10.1007/s11356-016-8237-1
doi: 10.1007/s11356-016-8237-1
[22]   GUO Q Q, CHEN R P, MA L Z, et al. Classification of corn stalk lodging resistance using equivalent forces combined with SVD algorithm[J]. Applied Sciences, 2019, 9(4): 640. DOI: 10.3390/app9040640
doi: 10.3390/app9040640
[23]   GUO Q Q, CHEN R P, SUN X Q, et al. A non-destructive and direction-insensitive method using a strain sensor and two single axis angle sensors for evaluating corn stalk lodging resistance[J]. Sensors, 2018, 18(6): 1852. DOI: 10.3390/s18061852
doi: 10.3390/s18061852
[24]   BERRY P M, SPINK J H, GAY A P, et al. A comparison of root and stem lodging risks among winter wheat cultivars[J]. Journal of Agricultural Science, 2003, 141: 191-202. DOI: 10.1017/S002185960300354x
doi: 10.1017/S002185960300354x
[25]   PEIFFER J A, FLINT-GARCIA S A, DE LEON N, et al. The genetic architecture of maize stalk strength[J]. PLoS ONE, 2013, 8(6): e67066. DOI: 10.1371/journal.pone.0067066
doi: 10.1371/journal.pone.0067066
[26]   LWIN N N, WIN K K, THAN H, et al. Evaluation of morphological traits related to lodging of rice varieties under different applied nitrogen rates in Bago (West) Region[D]. Nay Pyi Taw, Myanmar: Yezin Agricultural University, 2016: 1-7. DOI: 10.13140/RG.2.2.10861.18407
doi: 10.13140/RG.2.2.10861.18407
[27]   ZHANG W J, WU L W, WU X R, et al. Lodging resistance of japonica rice (Oryza Sativa L.): morphological and anatomical traits due to top-dressing nitrogen application rates[J]. Rice, 2016, 9: 31. DOI: 10.1186/s12284-016-0103-8
doi: 10.1186/s12284-016-0103-8
[28]   HEUSCHELE D J, WIERSMA J, REYNOLDS L, et al. The Stalker: an open source force meter for rapid stalk strength phenotyping[J]. Hardwarex, 2019, 6: e00067. DOI: 10.1016/j.ohx.2019.e00067
doi: 10.1016/j.ohx.2019.e00067
[29]   COOK D D, DE LA CHAPELLE W, LIN T C, et al. DARLING: a device for assessing resistance to lodging in grain crops[J]. Plant Methods, 2019, 15(1): 102. DOI: 10.1186/s13007-019-0488-7
doi: 10.1186/s13007-019-0488-7
[30]   ZHENG H B, CHENG T, LI D, et al. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice[J]. Remote Sensing, 2018, 10(6): 824. DOI: 10.3390/rs10060824
doi: 10.3390/rs10060824
[31]   WAN L, CEN H Y, ZHU J P, et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—a case study of small farmlands in the South of China[J]. Agricultural and Forest Meteorology, 2020, 291: 108096. DOI: 10.1016/j.agrformet.2020.108096
doi: 10.1016/j.agrformet.2020.108096
[32]   SINGH H K, TOMAR S K, MAURYA P K. Thresholding techniques applied for segmentation of RGB and multispectral images[C]//Proceedings on MPGI National Multi Conference on Advancement in Electronics and Telecommunication Engineering. [S. l. : s. n.], 2012.
[33]   NI M, WANG H J, DING Y J, et al. Research of rice lodging in farmland wind field based on CFD[C]//2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). IEEE, 2019: 57-61. DOI: 10.1109/ICCNEA.2019.00021
doi: 10.1109/ICCNEA.2019.00021
[34]   周平,周恺,刘涛,等.水稻倒伏监测研究进展[J].中国农机化学报,2019,40(10):162-168. DOI:10.13733/j.jcam.issn.2095-5553.2019.10.27
ZHOU P, ZHOU K, LIU T, et al. Progress in monitoring research on rice lodging[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(10): 162-168. (in Chinese with English abstract)
doi: 10.13733/j.jcam.issn.2095-5553.2019.10.27
[35]   滕祥勇,王金明,李鹏志,等.水稻抗倒伏性的影响因素及评价方法研究进展[J].福建农业学报,2021,36(10):1245-1254. DOI:10.19303/j.issn.1008-0384.2021.10.018
TENG X Y, WANG J M, LI P Z, et al. Advances on studies relating to lodging resistance of rice plant[J]. Fujian Journal of Agricultural Sciences, 2021, 36(10): 1245-1254. (in Chinese with English abstract)
doi: 10.19303/j.issn.1008-0384.2021.10.018
[36]   ERNDWEIN L, COOK D D, ROBERTSON D J, et al. Field-based mechanical phenotyping of cereal crops to assess lodging resistance[J]. Applications in Plant Sciences, 2020, 8(8): e11382. DOI: 10.1002/aps3.11382
doi: 10.1002/aps3.11382
[37]   THOMPSON D L. Stalk strength of corn as measured by crushing strength and rind thickness[J]. Crop Science, 1963, 3(4): 323-329. DOI:10.2135/cropsci1963.0011183x000300040013x
doi: 10.2135/cropsci1963.0011183x000300040013x
[38]   ZUBER M S, GROGAN C O. A new technique for measuring stalk strength in corn[J]. Crop Science, 1961, 1(5): 378-380. DOI:10.2135/cropsci1961.0011183x000100050028x
doi: 10.2135/cropsci1961.0011183x000100050028x
[39]   LI K, YAN J B, LI J S, et al. Genetic architecture of rind penetrometer resistance in two maize recombinant inbred line populations[J]. BMC Plant Biology, 2014, 14: 152. DOI: 10.1186/1471-2229-14-152
doi: 10.1186/1471-2229-14-152
[40]   勾玲,赵明,黄建军,等.玉米茎秆弯曲性能与抗倒能力的研究[J].作物学报,2008,34(4):653-661. DOI:10.3724/SP.J.1006.2008.00653
GOU L, ZHAO M, HUANG J J. Bending mechanical properties of stalk and lodging-resistance of maize (Zea mays L.)[J]. Acta Agronomica Sinica, 2008, 34(4): 653-661. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00653
[41]   ROBERTSON D, SMITH S, GARDUNIA B, et al. An improved method for accurate phenotyping of corn stalk strength[J]. Crop Science, 2014, 54(5): 2038-2044. DOI: 10.2135/cropsci2013.11.0794
doi: 10.2135/cropsci2013.11.0794
No related articles found!