Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 117-128    DOI: 10.3785/j.issn.1008-9209.2022.01.111
Agricultural engineering     
Changes of physiological and biochemical indexes of tea plant leaves under lead aerosol stress and their rapid spectral detection
Haitian CHEN1(),Xuejun ZHOU2,Junjing SHA1,Xiaoli LI1(),Jin WANG2(),Yong HE1
1.College of Biosystems Engineering and Food Science, Zhejiang University/Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, Zhejiang, China
2.Zhejiang Institute of Product Quality and Safety Science, Hangzhou 310018, Zhejiang, China
Download: HTML   HTML (   PDF(2457KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As a perennial foliage plant, the changes of physiological and biochemical indexes of tea plant under lead aerosol stress and the lead accumulation effect need to be studied urgently. In the present study, the lead aerosol was used to simulate atmospheric pollution, and the lead accumulation in roots, stems, and leaves as well as the changes of photosynthetic pigments and antioxidants in leaves of ‘Wuniuzao’ and ‘Yingshuang’ tea plants were evaluated. Then the model for the rapid detection of each index was established based on Fourier transform infrared (FTIR) spectroscopy. The results showed that the lead content of tea plant leaves in the normal environment was very low, which met the national food safety standards. The lead content of roots was much higher than that of leaves, which proved that the soil-root pathway was the main way for tea plants to accumulate lead in the normal environment. With the increase of stress time, the lead content in the leaves of high concentration lead stress group was significantly higher than that in the stems and roots, which proved that there was an air-leaf absorption pathway, and high concentration lead stress group was up to 14 times that of no lead treatment group. In addition, the photosynthetic pigment and ascorbic acid contents increased initially and then decreased, whereas glutathione content basically increased during the entire 42 days. Support vector machine (SVM) and artificial neural network (ANN) were used to establish quantitative prediction models for monitoring the physiological and biochemical indexes based on the characteristic wave-band of the mid-infrared spectrum, proving that the mid-infrared spectrum could be a potential approach for the rapid detection of physiological and biochemical indexes in tea plants under the lead aerosol stress, and the ANN model showed better effects than the SVM model. The ANN quantitative model of chlorophyll a obtained the best prediction effect, of which the best correlation coefficient of prediction set (rp) could reach 0.810, and the root-mean-square error of prediction set (RMSEp) was 0.032 mg/g. The above results indicate that lead aerosol stress could cause the accumulation of lead and result in the significant changes of physiological and biochemical indexes in tea plants, and the FTIR spectroscopy is a reliable method for the rapid detection of physiological and biochemical indexes in tea plants under the lead aerosol stress.



Key wordslead aerosol      tea plant      photosynthetic pigment      antioxidant      infrared spectroscopy     
Received: 11 January 2022      Published: 07 March 2023
CLC:  S571.1  
Corresponding Authors: Xiaoli LI,Jin WANG     E-mail: 21913053@zju.edu.cn;xiaolili@zju.edu.cn;wjin_920@163.com
Cite this article:

Haitian CHEN,Xuejun ZHOU,Junjing SHA,Xiaoli LI,Jin WANG,Yong HE. Changes of physiological and biochemical indexes of tea plant leaves under lead aerosol stress and their rapid spectral detection. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 117-128.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.01.111     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/117


铅气溶胶胁迫下茶树叶片生理生化指标变化及光谱快速检测

茶树作为多年生叶用植物,在铅气溶胶胁迫下的生理生化指标变化和铅累积效应亟待研究。本文以铅气溶胶方式模拟大气污染环境,研究‘乌牛早’与‘迎霜’2个品种茶树在铅气溶胶胁迫下根、茎、叶各器官的铅累积情况以及叶片中光合色素和抗氧化物的变化规律,并结合傅里叶变换红外(Fourier transform infrared, FTIR)光谱技术建立各指标的快速检测模型。结果表明:在正常环境条件下茶树叶片的铅含量极少,符合食品安全国家标准,根的铅含量远高于叶,证明在正常环境条件下土壤-根途径是茶树积累铅的主要途径。随着胁迫时间的延长,高质量浓度铅胁迫组叶片的铅含量显著高于茎和根,证明存在大气-叶面吸收途径,高质量浓度铅胁迫组叶片中铅含量最高可达无铅处理组的14倍;在胁迫试验的42 d中,叶片的光合色素含量与抗坏血酸含量在胁迫的前中期不断增加,而在胁迫的中后期不断减少,谷胱甘肽含量整体处于上升趋势。分别采用支持向量机(support vector machine, SVM)与人工神经网络(artificial neural network, ANN)建立了基于中红外光谱特征波段的生理生化指标定量预测模型,两者均可实现铅气溶胶胁迫下茶树生理生化指标的快速检测,并且ANN模型的效果普遍优于SVM模型。其中,叶绿素a的ANN定量模型得到了最佳预测效果,在预测集中的相关系数可达0.810,均方根误差可达0.032 mg/g。综上所述,铅气溶胶胁迫会导致茶树体内铅的累积以及生理生化指标的显著变化,基于FTIR光谱技术可实现茶树生理生化指标的快速检测,有望构建茶树受铅气溶胶胁迫的快速诊断方法。


关键词: 铅气溶胶,  茶树,  光合色素,  抗氧化物,  红外光谱 
Fig. 1 Changes of lead contents in different organs of tea plants under different concentrations of lead aerosol stressA. ‘Wuniuzao’; B. ‘Yingshuang’. CK: 0 μg/m3 lead aerosol treatment group; LP: 100 μg/m3 lead aerosol treatment group; HP: 500 μg/m3 lead aerosol treatment group (the same as below).
Fig. 2 Changes of chlorophyll a, chlorophyll b and carotenoid contents of tea plant leaves under different concentrations of lead aerosol stressA-C. ‘Wuniuzao’; D-F. ‘Yingshuang’. Different lowercase letters above bars indicate significant differences among different treatments at the 0.05 probability level (the same as below).
Fig. 3 Changes of ASA and GSH contents of tea plant leaves under different concentrations of lead aerosol stressA-B. ‘Wuniuzao’; C-D. ‘Yingshuang’.
Fig. 4 Average FTIR spectra of tea plant fresh leaves on day 42 under different concentrations of lead aerosol stressA. ‘Wuniuzao’; B. ‘Yingshuang’.
Fig. 5 Results of analysis of variance between average FTIR spectra of tea plant fresh leaves and different concentrations of lead aerosol stress on day 42

指标

Index

预处理方法

Pretreatment method

建模结果 Modeling result
rcRMSEcrvRMSEvrpRMSEp

叶绿素a

Chl a

SNV0.8290.1500.7790.1680.5260.240
MSC0.7600.1920.7060.2120.6120.224
SG0.7360.1900.6640.2110.5400.238

叶绿素b

Chl b

SNV0.7620.0850.6980.0940.6350.105
MSC0.7750.0830.7180.0920.5970.109
SG0.6980.0940.5870.1070.6380.105

类胡萝卜素

Car

SNV0.6720.0370.5750.0410.4970.045
MSC0.6770.0360.5820.0410.5280.045
SG0.6470.0380.5750.0400.4060.048

抗坏血酸

ASA

SNV0.6961.1140.6371.2030.5121.460
MSC0.6571.1670.6001.2500.5331.437
SG0.6091.2540.4961.3870.5421.427

谷胱甘肽

GSH

SNV0.6384.1610.5454.5720.4447.905
MSC0.6434.1560.5644.5340.4577.843
SG0.6204.1520.5044.5820.4527.872
Table 1 Results of full wave-band PLS models built on different pretreatment methods

指标

Index

建模方法

Modeling method

建模结果 Modeling result
rcRMSEcrvRMSEvrpRMSEp

叶绿素a

Chl a

MSC+SVM0.7990.1700.7560.1850.7060.189
MSC+ANN0.8200.0250.7910.0280.8100.032

叶绿素b

Chl b

SG+SVM0.7640.0880.6960.0960.7660.085
SG+ANN0.8000.0060.8090.0050.7860.008

类胡萝卜素

Car

MSC+SVM0.6800.0380.5970.0410.5510.041
MSC+ANN0.6460.0010.6130.0020.6280.002

抗坏血酸

ASA

SG+SVM0.7461.0560.6791.1520.6281.086
SG+ANN0.8470.6490.8070.8410.7680.964

谷胱甘肽

GSH

MSC+SVM0.7003.9370.6184.3350.6233.754
MSC+ANN0.76113.3810.71211.6700.68911.970
Table 2 Results of characteristic variable models built on components extracted by PLS
[1]   温立香,张芬,何梅珍,等.茶叶品质评价技术的研究现状[J].食品研究与开发,2018,39(15):197-204. DOI:10.3969/j.issn.1005-6521.2018.15.038
WEN L X, ZHANG F, HE M Z, et al. Research situation for evaluation technology of tea quality[J]. Food Research and Development, 2018, 39(15): 197-204. (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-6521.2018.15.038
[2]   杜蕾,郎红,邵辉,等.茶叶中重金属含量影响因素的研究进展[J].安徽农学通报,2018,24(24):40-42. DOI:10.16377/j.cnki.issn1007-7731.2018.24.019
DU L, LANG H, SHAO H, et al. Progress in the impact factors of heavy metal in tea[J]. Anhui Agricultural Science Bulletin, 2018, 24(24): 40-42. (in Chinese with English abstract)
doi: 10.16377/j.cnki.issn1007-7731.2018.24.019
[3]   陈玉真,单睿阳,王峰,等.田间条件下茶园土壤-茶树-茶汤中铅含量及健康风险评价[J].茶叶学报,2020,61(2):66-73. DOI:10.3969/j.issn.1007-4872.2020.02.004
CHEN Y Z, SHAN R Y, WANG F, et al. Lead concentrations and risk assessment of plantation soil, tea plants, and brewed tea[J]. Acta Tea Sinica, 2020, 61(2): 66-73. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-4872.2020.02.004
[4]   杨婉秋,肖涵,缪德仁.锗、铜、铅和锌在云南大叶种茶树不同组织中的含量分布[J].昆明学院学报,2020,42(6):30-34. DOI:10.14091/j.cnki.kmxyxb.2020.06.007
YANG W Q, XIAO H, MIAO D R. Concentration distribution characteristics of cermanium, copper, lead and zinc in different tissues of Yunnan large-leaved tea plant[J]. Journal of Kunming University, 2020, 42(6): 30-34. (in Chinese with English abstract)
doi: 10.14091/j.cnki.kmxyxb.2020.06.007
[5]   叶江华,贾小丽,陈晓婷,等.铅胁迫下不同茶树的生理响应及其亚细胞水平铅分布特性分析[J].中国农业科技导报,2017,19(11):92-99. DOI:10.13304/j.nykjdb.2017.0190
YE J H, JIA X L, CHEN X T, et al. Physiological response and subcellular distribution in different tea plants under Pb stress[J]. Journal of Agricultural Science and Technology, 2017, 19(11): 92-99. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2017.0190
[6]   唐迪,李树炎,徐晓燕,等.重金属镉处理对茶树鲜叶营养成分的影响[J].湖北农业科学,2013,52(18):4407-4410. DOI:10.14088/j.cnki.issn0439-8114.2013.18.011
TANG D, LI S Y, XU X Y, et al. Effect of cadmium on the nutritional components in fresh leaves of Camellia sinensis [J]. Hubei Agricultural Sciences, 2013, 52(18): 4407-4410. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2013.18.011
[7]   ALKHATIB R, MHEIDAT M, ABDO N, et al. Effect of lead on the physiological, biochemical and ultrastructural properties of Leucaena leucocephala [J]. Plant Biology, 2019, 21(6): 1132-1139. DOI: 10.1111/plb.13021
doi: 10.1111/plb.13021
[8]   杨艺宁,李琬婷,黄晓霞,等.铅胁迫对洋常春藤生长及生理特性的影响[J].西部林业科学,2020,49(3):126-131. DOI:10.16473/j.cnki.xblykx1972.2020.03.019
YANG Y N, LI W T, HUANG X X, et al. Effects of lead stress on growth and physiological characteristics of Hedera helix [J]. Journal of West China Forestry Science, 2020, 49(3): 126-131. (in Chinese with English abstract)
doi: 10.16473/j.cnki.xblykx1972.2020.03.019
[9]   王丽艳,杨桦,周晨,等.东京野茉莉对重金属胁迫的响应特征研究[J].南方林业科学,2021,49(5):25-28. DOI:10.16259/j.cnki.36-1342/s.2021.05.006
WANG L Y, YANG H, ZHOU C, et al. Research of response characteristics of Styrax tonkinensis to heavy metal stress[J]. South China Forestry Science, 2021, 49(5): 25-28. (in Chinese with English abstract)
doi: 10.16259/j.cnki.36-1342/s.2021.05.006
[10]   HU X, ZHANG Y, LUO J, et al. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus)[J]. Chemosphere, 2011, 82(10): 1351-1357. DOI: 10.1016/j.chemosphere.2010.11.079
doi: 10.1016/j.chemosphere.2010.11.079
[11]   SHAHID M, DUMAT C, KHALID S, et al. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake[J]. Journal of Hazardous Materials, 2017, 325: 36-58. DOI: 10.1016/j.jhazmat.2016.11.063
doi: 10.1016/j.jhazmat.2016.11.063
[12]   LI X L, SUN C J, LUO L B, et al. Determination of tea polyphenols content by infrared spectroscopy coupled with iPLS and random frog techniques[J]. Computers and Electronics in Agriculture, 2015, 112: 28-35. DOI: 10.1016/j.compag.2015.01.005
doi: 10.1016/j.compag.2015.01.005
[13]   WULANDARI L, SISWANTI R A Y N, NUGRAHA A S. Determination of total phenolic content and classification model of local variety soursop (Annona muricata L.) leaf powder in different altitudes using NIR and FTIR spectroscopy coupled with chemometrics[J]. Indonesian Journal of Pharmacy, 2019, 30(1): 7-14. DOI: 10.14499/indonesianjpharm30iss1pp7
doi: 10.14499/indonesianjpharm30iss1pp7
[14]   张惠敏,侯黔东,吴亚维,等.基于Raman和FTIR揭示避雨栽培甜樱桃叶片光合色素变化的光谱学分析[J].光谱学与光谱分析,2021,41(4):1171-1176. DOI:10.3964/j.issn.1000-0593(2021)04-1171-06
ZHANG H M, HOU Q D, WU Y W, et al. Spectral analysis of changes in photosynthetic pigment composition in leaves of sweet cherry tree under rain-shelter cultivation based on Raman and FTIR[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1171-1176. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2021)04-1171-06
[15]   王爱玉,张春庆,吴承来,等.玉米叶绿素含量快速测定方法研究[J].玉米科学,2008,16(2):97-100. DOI:10.13597/j.cnki.maize.science.2008.02.017
WANG A Y, ZHANG C Q, WU C L, et al. Study on a fast method of testing chlorophyll content in maize[J]. Journal of Maize Sciences, 2008, 16(2): 97-100. (in Chinese with English abstract)
doi: 10.13597/j.cnki.maize.science.2008.02.017
[16]   ZARRILLO A, MINUTOLO M, ALIOTO D, et al. Ascorbic acid regulation in leaves and fruits of tomato ecotypes infected by Eggplant Mottled Dwarf Virus [J]. Scientia Horticulturae, 2017, 225: 512-524. DOI: 10.1016/j.scienta.2017.07.043
doi: 10.1016/j.scienta.2017.07.043
[17]   TIETZE F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues[J]. Analytical Biochemistry, 1969, 27(3): 502-522.
[18]   GREEN B R, DURNFORD D G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 685-714. DOI: 10.1146/annurev.arplant.47.1.685
doi: 10.1146/annurev.arplant.47.1.685
[19]   ZANCAJO V M R, LINDTNER T, EISELE M, et al. FTIR nanospectroscopy shows molecular structures of plant bio-minerals and cell walls[J]. Analytical Chemistry, 2020, 92(20): 13694-13701. DOI: 10.1021/acs.analchem.0c00271
doi: 10.1021/acs.analchem.0c00271
[20]   RATHER L J, SHAHID-UL-ISLAM, SHABBIR M, et al. Ecological dyeing of woolen yarn with Adhatoda vasica natural dye in the presence of biomordants as an alternative copartner to metal mordants[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3041-3049. DOI: 10.1016/j.jece.2016.06.019
doi: 10.1016/j.jece.2016.06.019
[21]   CAI J X, WANG Y F, XI X G, et al. Using FTIR spectra and pattern recognition for discrimination of tea varieties[J]. International Journal of Biological Macromolecules, 2015, 78: 439-446. DOI: 10.1016/j.ijbiomac.2015.03.025
doi: 10.1016/j.ijbiomac.2015.03.025
[22]   JOZWIAK T, FILIPKOWSKA U, STRUK-SOKOLOWSKA J, et al. The use of spent coffee grounds and spent green tea leaves for the removal of cationic dyes from aqueous solutions[J]. Scientific Reports, 2021, 11(1): 9584. DOI: 10.1038/s41598-021-89095-6
doi: 10.1038/s41598-021-89095-6
[23]   LI X L, ZHOU R Q, XU K W, et al. Rapid determination of chlorophyll and pheophytin in green tea using Fourier transform infrared spectroscopy[J]. Molecules, 2018, 23(5): 1010. DOI: 10.3390/molecules23051010
doi: 10.3390/molecules23051010
[24]   REVELOU P K, KOKOTOU M G, PAPPAS C S, et al. Direct determination of total isothiocyanate content in broccoli using attenuated total reflectance infrared Fourier transform spectroscopy[J]. Journal of Food Composition and Analysis, 2017, 61: 47-51. DOI: 10.1016/j.jfca.2017.01.020
doi: 10.1016/j.jfca.2017.01.020
[25]   LI X L, ZHANG Y Y, HE Y. Rapid detection of talcum powder in tea using FT-IR spectroscopy coupled with chemometrics[J]. Scientific Reports, 2016, 6(1): 30313. DOI: 10.1038/srep30313
doi: 10.1038/srep30313
[26]   SCHRECK E, DAPPE V, SARRET G, et al. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves[J]. Science of the Total Environment, 2014, 476: 667-676. DOI: 10.1016/j.scitotenv.2013.12.089
doi: 10.1016/j.scitotenv.2013.12.089
[27]   TOMASEVIC M, VUKMIROVIC Z, RAJSIC S, et al. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 2005, 61(6): 753-760. DOI: 10.1016/j.chemosphere.2005.03.077
doi: 10.1016/j.chemosphere.2005.03.077
[28]   张庆,魏树和,代惠萍,等.硒对茶树镉毒害的缓解作用研究[J].南京林业大学学报(自然科学版),2020,44(1):200-204. DOI:10.3969/j.issn.1000-2006.201902006
ZHANG Q, WEI S H, DAI H P, et al. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(1): 200-204. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2006.201902006
[29]   许永安.低温胁迫对甜瓜幼苗光合能力及叶绿素荧光参数的影响[J].中国瓜菜,2020,33(2):22-26. DOI:10.16861/j.cnki.zggc.2020.0030
XU Y A. Effects of low-temperature stress on photosynthetic capacity and chlorophyll fluorescence parameters in melon[J]. China Cucurbits and Vegetables, 2020, 33(2): 22-26. (in Chinese with English abstract)
doi: 10.16861/j.cnki.zggc.2020.0030
[1] Yi CHEN,Fei JI,Jianxin LIU,Diming WANG. Effect of dietary supplementation of Zn- L -selenomethionine on lactation performance and plasma biochemical indexes of dairy cows in peak lactation period[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 517-524.
[2] Ren ZHOU,Yu CAI,Tianyi LIN,Mingliang CHAI. Effects of melatonin and epibrassinolide on the regeneration of long-term subcultured callus of Zoysia matrella (L.) Merr. under simulated drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 36-44.
[3] Xincheng YUAN,Fei JIANG,Yonghai SHI,Jiabo XU,Yongshi LIU,Pingping DENG. Effects of high temperature stress on antioxidative and non-specific immunity indices of one-year-old Alosa sapidissima[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 107-117.
[4] Qianqian YANG,Jianguo CAI,An WANG,Yanwei LIU. Growth and aluminum absorption responses of Hydrangea macrophylla to combined treatments of acid rain and aluminum[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 718-726.
[5] Zhixiong CHEN,Liqiang TAN,Yuyu ZHANG,Wei XU,Xupeng ZHAO,Wengang XIE,Yang LIU,Yan LIU. Comparison on characteristics and 1, 1-diphenyl-2-picrylhydrazyl scavenging activity of theabrownine fractions from Tibetan tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 582-590.
[6] Xiaolian CHEN,Wenjing SONG,Quanyong ZHOU,Qiongli SONG,Zhiheng ZOU,Linxiu LIU,Lizhen HU,Qipeng WEI,Jingsheng YAN, Dalieya?AHEMAITI. Effects of Callicarpa kwangtungensis Chun. extract on reproductive performance, immune function, antioxidant capacity and intestinal flora of sows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 360-368.
[7] Tiantian GU,Yong TIAN,Wei ZHOU,Guofa LIU,Li CHEN,Tao ZENG,Xinsheng WU,Qi XU,Guohong CHEN,Lizhi LU. Effects of caged stress on the duodenal tissue structure, antioxidant capacity and gene mRNA expression level of Shaoxing duck[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 234-242.
[8] Yuqing WEI,Yuning WANG,Shaojia LI,Chongde SUN,Di WU. Non-destructive detecting and annual duplicate verification of loquat fruit’s total soluble solids based on self-developed portable near-infrared spectrometer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 119-125.
[9] Jin LI,Lianfu CHEN,Eunhye KIM,Bo LI,Youying TU. Research on flavonoid glycosides of tea flower in different tea plant cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 707-714.
[10] Xiaohan Lü,Jinlin JIANG,Jing YANG,Jianying CHEN,Haiyan CEN,Hongfei FU,Yifei ZHOU. Detection of capsaicin content by near-infrared spectroscopy combined with optimal wavelengths[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 760-766.
[11] Elmon CHINDUDZI,Bangrong SU,Yi GUO,Zhentao ZHONG,Jane MAKONI,Shuijin ZHU,Jinhong CHEN. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 647-656.
[12] Yuzhen WANG,Yao MA,Qi CHEN,Hongyan MA,Jing YANG,Chen LIU,Junzhi LI,Xiaokui MA. Effects of monochromatic lights on the growth and antioxidant enzyme activity of Sanghuangporus sanghuang[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 542-549.
[13] Zhigang WANG,Chao XU,Xiahui LI,Shiyu LIN,Xiaxia DU,Chonglin RAN,Gang SHU. Effects of Moringa oleifera leaf powder on production performance, immune function and antioxidant capacity of quails[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 243-250.
[14] LI Yongxin, ZOU Yixuan, LIU Jianxin, LIU Hongyun. Progress on oxidative stress and natural phytogenic antioxidants in dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 549-554.
[15] MIAO Huiying, CHEN Hao, CHANG Jiaqi, WANG Mengyu, ZHANG Fen, SUN Bo, WANG Qiaomei. Effects of glucose and methyl jasmonate treatments on glucosinolate accumulation and antioxidant attributes in Chinese kale sprouts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 327-334.