Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (5): 582-590    DOI: 10.3785/j.issn.1008-9209.2020.03.061
Food sciences     
Comparison on characteristics and 1, 1-diphenyl-2-picrylhydrazyl scavenging activity of theabrownine fractions from Tibetan tea
Zhixiong CHEN1(),Liqiang TAN2(),Yuyu ZHANG1,Wei XU2,Xupeng ZHAO1,Wengang XIE1,2,Yang LIU1,Yan LIU1
1.College of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
2.College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
Download: HTML   HTML (   PDF(1961KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A membrane separation technology was used to make a grading preparation of theabrownines from Tibetan tea, and four theabrownine fractions (TBFs) with the molecular mass of 5-10, >10-50, >50-100, and >100 kDa were got, which were named as TBFs1, TBFs2, TBFs3 and TBFs4, respectively. The physicochemical properties, microstructure, and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity of the four TBFs were comparatively studied. The results showed that the molecular mass of theabrownines was not less than 5 kDa, and the four TBFs with different ranges of molecular mass were all weakly acidic, which had different contents of phenolic hydroxyl, carboxyl group, and the complex compounds including proteins and polysaccharides. Spectroscopic analysis showed that the theabrownines were polyhydroxyphenols and were characterized by an absorption peak near 202 nm. The scanning electron microscope observation showed that the aggregation state of the TBFs was significantly different from each other. Within the range of 10-80 μg/mL, there was a positive linear correlation between the theabrownine concentration and its DPPH radical scavenging ability. In addition, the four TBFs showed significantly different antioxidant activities from each other, and the most active fraction was TBFs4 (>100 kDa).



Key wordsTibetan tea      theabrownines      membrane separation      physicochemical properties      antioxidant activity      1, 1-diphenyl-2-picrylhydrazyl     
Received: 06 March 2020      Published: 19 November 2020
CLC:  TS 272  
Corresponding Authors: Zhixiong CHEN,Liqiang TAN     E-mail: zxchan1987@hotmail.com;Tanliqiang@sicau.edu.cn
Cite this article:

Zhixiong CHEN,Liqiang TAN,Yuyu ZHANG,Wei XU,Xupeng ZHAO,Wengang XIE,Yang LIU,Yan LIU. Comparison on characteristics and 1, 1-diphenyl-2-picrylhydrazyl scavenging activity of theabrownine fractions from Tibetan tea. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 582-590.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.03.061     OR     http://www.zjujournals.com/agr/Y2020/V46/I5/582


藏茶茶褐素组分特征及其清除1,1-二苯基-2-三硝基苯肼自由基活性的比较

借助膜分离技术对藏茶茶褐素进行分级制备,得到4个茶褐素组分(theabrownine fractions, TBFs),其分子质量范围分别为5~10 kDa(TBFs1)、>10~50 kDa(TBFs2)、>50~100 kDa(TBFs3)和>100 kDa(TBFs4),并对这4个组分进行理化特性、微观结构和清除1,1-二苯基-2-三硝基苯肼(1, 1-diphenyl-2-picrylhydrazyl, DPPH)自由基活性的比较研究。结果表明,藏茶茶褐素的分子质量不低于5 kDa,4个不同分子质量范围的茶褐素组分均呈弱酸性,具有不同含量的酚羟基、羧基以及蛋白质和多糖等络合物。光谱学分析显示,藏茶茶褐素属多羟基酚类物质,在202 nm附近有一特征吸收峰;扫描电镜观察发现,不同茶褐素组分的聚集形态差异明显。活性分析表明,藏茶茶褐素在10~80 μg/mL范围内其质量浓度与DPPH自由基的清除率呈线性正相关,且各组分间活性差异显著,其中活性最强的茶褐素组分为TBFs4(>100 kDa)。


关键词: 藏茶,  茶褐素,  膜分离,  理化特征,  抗氧化活性,  1,1-二苯基-2-三硝基苯肼 
Fig. 1 Extraction and separation flow diagram of theabrownines from Tibetan teaTBFs: Theabrownine fractions.

茶褐素组分

Theabrownine fractions

m/g

占比

Proportion/%

TBFs0(<5 kDa)00
TBFs1(5~10 kDa)13.4417.70
TBFs2(>10~50 kDa)10.2913.55
TBFs3(>50~100 kDa)14.2418.76
TBFs4(>100 kDa)37.9549.99
Table 1 Yield of theabrownines with different molecular mass distribution
Fig. 2 Ultraviolet-visible spectrogram of theabrownines with different molecular mass distribution
Fig. 3 Infrared spectrogram of theabrownines with different molecular mass distribution

茶褐素组分

Theabrownine

fractions

pH

总酸性基

Total acidic

group/(mmol/g)

羧基

Carboxyl

group/(mmol/g)

酚羟基

Phenol

hydroxyl/(mmol/g)

蛋白质

Protein/%

多糖

Polysaccharide/%

TBFs15.68±0.03ab6.33±0.15c1.74±0.08c4.58±0.22d2.07±0.42c17.91±1.11a
TBFs25.74±0.03a7.27±0.20b1.79±0.11bc5.48±0.09b4.07±0.57b11.93±0.48c
TBFs35.65±0.09ab7.32±0.29b2.13±0.23b5.18±0.06c3.82±0.89b13.73±0.59b
TBFs45.61±0.08b9.03±0.41a2.94±0.31a6.10±0.10a6.73±0.46a14.33±0.20b
Table 2 Determination result on pH and compositions of theabrownines with different molecular mass distribution
Fig. 4 Scanning electron microscopy of theabrownines with different molecular mass distribution
Fig. 5 DPPH radical scavenging ability of theabrownine fractions with different concentrations

茶褐素组分

Theabrownine fractions

IC50/(μg/mL)
TBFs1(5~10 kDa)74.51±2.38Aa
TBFs2(>10~50 kDa)60.68±2.32Bc
TBFs3(>50~100 kDa)69.97±2.85Ab
TBFs4(>100 kDa)54.60±1.51Bd
Table 3 Median inhibition concentration (IC50) of different theabrownine fractions on scavenging DPPH radicals
[1]   陈书谦.雅安藏茶:中国黑茶的典型代表. 中华文化论坛,2008(3):125-129.
CHEN S Q. Ya’an Tibetan tea: representative of Chinese dark tea. Forum on Chinese Culture, 2008(3):125-129. (in Chinese)
[2]   陈智雄,齐桂年,邹瑶,等.黑茶调节脂质代谢的物质基础及机理研究进展. 茶叶科学,2013,33(3):242-252.
CHEN Z X, QI G N, ZOU Y, et al. Research advance on mechanism of regulating lipid metabolism by active ingredients of dark tea. Journal of Tea Science, 2013,33(3):242-252. (in Chinese with English abstract)
[3]   陈应娟,齐桂年,陈盛相,等.四川黑茶加工过程中感官品质和化学成分的变化. 食品科学,2012,33(23):55-59.
CHEN Y J, QI G N, CHEN S X, et al. Changes in sensory quality and chemical composition of Sichuan brick tea during processing. Food Science, 2012,33(23):55-59. (in Chinese with English abstract)
[4]   PENG C X, JIAN L, LIU H R, et al. Influence of different fermentation raw materials on pyrolyzates of Pu-erh tea theabrownin by Curie-point pyrolysis-gas chromatography-mass spectroscopy. International Journal of Biological Macromolecules, 2013,54(1):197-203. DOI:10.1016/j.ijbiomac.2012.12.021
doi: 10.1016/j.ijbiomac
[5]   XIE G X, YE M, WANG Y G, et al. Characterization of Pu-erh tea using chemical and metabolic profiling approaches. Journal of Agricultural & Food Chemistry, 2009,57(8):3046-3054. DOI:10.1021/jf804000y
doi: 10.1021/jf804000y
[6]   王伟伟,江和源,张建勇,等.茶褐素的提取纯化与生理功效研究进展. 食品安全质量检测学报,2015,6(4):1187-1192.
WANG W W, JIANG H Y, ZHANG J Y, et al. Advances in extraction and purification technology and physiological efficacy of theabrownine. Journal of Food Safety and Quality, 2015,6(4):1187-1192. (in Chinese with English abstract)
[7]   张云天,姚晓玲,鲁江,等.黑茶茶褐素的研究现状及进展. 食品工业科技,2017,38(11):395-399. DOI:10.13386/j.issn1002-0306.2017.11.068
ZHANG Y T, YAO X L, LU J, et al. Current research status and progress of the theabrownine in dark tea. Science and Technology of Food Industry, 2017,38(11):395-399. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-
[8]   WANG Q P, GONG J S, CHISTI Y, et al. Production of theabrownins using a crude fungal enzyme concentrate. Journal of Biotechnology, 2016,231:250-259. DOI:10.1016/j.jbiotec.2016.06.010
doi: 10.1016/j.jbiotec.2016.06.010
[9]   WU E K, ZHANG T T, TAN C, et al. Theabrownin from Pu-erh tea together with swinging exercise synergistically ameliorates obesity and insulin resistance in rats. European Journal of Nutrition, 2019(6):1-14. DOI:10.1007/s00394-019-02044-y
doi: 10.1007/s00394-019-02044-y
[10]   HUANG F J, ZHENG X J, MA X H, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nature Communications, 2019,10(1):4971-4988. DOI:10.1038/s41467-019-12896-x
doi: 10.1038/s41467-019-12896-x
[11]   杨大鹏,史文斌,陈一江,等.不同微生物发酵的云南普洱茶样中茶褐素提取物的化学成分分析. 林产化学与工业,2010,30(1):49-52.
YANG D P, SHI W B, CHEN Y J, et al. Chemical compositions of theabrownin extract from Pu-erh tea during fermentation by different microorganisms. Chemistry and Industry of Forest Products, 2010,30(1):49-52. (in Chinese with English abstract)
[12]   吴恩凯,王秋萍,龚加顺,等.发酵方法对普洱茶茶褐素样品组成的影响. 食品科学,2019,40(4):215-221. DOI:10.7506/spkx1002-6630-20171201-006
WU E K, WANG Q P, GONG J S, et al. Effect of fermentation methods on theabrownin composition of Pu-erh tea. Food Science, 2019,40(4):215-221. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20171201-006
[13]   李涛,何春雷,蔡亚丽,等.不同嫩度原料对藏茶主要品质及香气的影响. 食品工业科技,2019,40(7):76-81. DOI:10.13386/j.issn1002-0306.2019.07.014
LI T, HE C L, CAI Y L, et al. Effects of different tenderness materials on the main quality and aroma of Tibetan tea. Science and Technology of Food Industry, 2019,40(7):76-81. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2019.07.014
[14]   李祥龙,李晓梅,杨煦,等.黑茶茶褐素与茶多糖对脂肪酶的抑制作用. 食品与机械,2018,34(3):27-31. DOI:10.13652/j.issn.1003-5788.2018.03.006
LI X L, LI X M, YANG X, et al. Study of inhibition of black tea theabrownin and tea polysaccharides on lipase. Food and Machinery, 2018,34(3):27-31. (in Chinese with English abstract)
doi: 10.13652/j.issn.1003-5788.2018.03.006
[15]   郭金龙,王春梅,杜晓.雅安藏茶对氧自由基清除能力评价. 四川农业大学学报,2009,27(2):189-192.
GUO J L, WANG C M, DU X. Appraisal of Ya’an Tibet tea’s scavenging effects on oxygen free radical. Journal of Sichuan Agricultural University, 2009,27(2):189-192. (in Chinese with English abstract)
[16]   袁野,章斌,姚永秀,等.雅安藏茶调脂保肝及抗氧化作用研究. 扬州大学学报(农业与生命科学版),2017,38(1):40-44. DOI:10.16872/j.cnki.1671-4652.2017.01.008
YUAN Y, ZHANG B, YAO Y X, et al. Functions of Ya’an Tibetan tea in blood lipid regulation, antioxidant activity and liver protection. Journal of Yangzhou University (Agricultural and Life Science Edition), 2017,38(1):40-44. (in Chinese with English abstract)
doi: 10.16872/j.cnki.1671-4652.2017.01.008
[17]   杨新河,李勤,黄建安,等.普洱茶茶色素提取工艺条件的响应面分析及其抗氧化性活性研究. 食品科学,2011,32(6):1-6.
YANG X H, LI Q, HUANG J A, et al. Optimization of process conditions for Pu-erh tea pigment extraction by response surface analysis and its antioxidant activity. Food Science, 2011,32(6):1-6. (in Chinese with English abstract)
[18]   GONG J S, TANG C, PENG C X. Characterization of the chemical differences between solvent extracts from Pu-erh tea and Dianhong black tea by CP-Py-GC/MS. Journal of Analytical and Applied Pyrolysis, 2012,95:189-197. DOI:10.1016/j.jaap.2012.02.006
doi: 10.1016/j.jaap.2012.02.006
[19]   王黎明,夏文水.蒽酮-硫酸法测定茶多糖含量的研究. 食品科学,2005,26(7):185-188.
WANG L M, XIA W S. Determination of TPS by improvement of anthrone-sulfuric acid method. Food Science, 2005,26(7):185-188. (in Chinese with English abstract)
[20]   秦谊,龚加顺,张惠芬,等.BaCl2和Ca(CH3COO)2沉淀法定量分析普洱茶茶褐素官能团. 林产化学与工业,2010,30(6):107-112.
QIN Y, GONG J S, ZHANG H F, et al. Quantitative determination of functional groups in theabrownine from Pu-erh tea based on BaCl2 and Ca(CH3COO)2 precipitation methods. Chemistry and Industry of Forest Products, 2010,30(6):107-112. (in Chinese with English abstract)
[21]   张钦,董立星,李改青,等.“紫娟”普洱茶茶褐素的膜分离及其理化性质的初步研究. 茶叶科学,2012,32(3):189-196.
ZHANG Q, DONG L X, LI G Q, et al. Study on membrane separation and its physicochemical properties of theabrownin in ‘Zijuan’ Pu-erh tea. Journal of Tea Science, 2012,32(3):189-196. (in Chinese with English abstract)
[22]   贺国文,钟桐生,彭晓赟,等.茯砖茶褐素组分特征及对α-葡萄糖苷酶活性抑制研究. 茶叶科学,2016,36(1):102-110.
HE G W, ZHONG T S, PENG X Y, et al. Comparative study on component characteristics and inhibitory activities on α-glucosidase of theabrownin from Fuzhuan brick tea. Journal of Tea Science, 2016,36(1):102-110. (in Chinese with English abstract)
[23]   赵书青.膜技术分离青砖茶减肥降脂活性组分的研究.武汉:华中农业大学,2012.
ZHAO S Q. Study on membrane technology in the separation of active components for anti-obesity and lipid-lowering from Qingzhuan tea. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)
[24]   MARX J L. Oxygen free radicals linked to many diseases. Science, 1987,235(4788):529-531.
[25]   陈玉琼,樊蓉,刘思思,等.普洱茶提取物主要活性成分及抗氧化作用. 食品科学,2013,34(19):133-137. DOI:10.7506/spkx1002-6630-201319029
CHEN Y Q, FAN R, LIU S S, et al. Phenolic composition and antioxidant activity of Pu-erh tea extracts. Food Science, 2013,34(19):133-137. (in English)
doi: 10.7506/spkx1002-6630-201319029
[26]   CZERWI?SKA M, KISS A K, NARUSZEWICZ M. A comparison of antioxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chemistry, 2012,131(3):940-947. DOI:10.1016/j.foodchem.2011.09.082
doi: 10.1016/j.foodchem.2011.09.082
[27]   ZHANG S, LI X Z, WU Z P, et al. Antioxidant activity of polysaccharide from camellia cake against ABTS and DPPH free radicals. Advanced Materials Research, 2012,550/551/552/553:1545-1549. DOI:10.4028/www.scientific.net/AMR.550-553.1545
doi: 10.4028/www.scientific.net/AMR
[28]   孙娅.茶树品种间多糖组成、活性差异及低活性茶多糖的结构分析.武汉:华中农业大学,2007.
SUN Y. Studies on composition, bioactivity of tea polysaccharides from 69 varieties and structure of tea polysaccharides with lower bioactivity. Wuhan: Huazhong Agricultural University, 2007. (in Chinese with English abstract)
[1] YANG Hui, KE Leqin, SHU Ruonan, CHEN Yuwei, ZHU Tingyu, WANG Jun, FAN Jintao, WANG Liangliang. Effects of different storage time on polysaccharide content and antioxidant activity of edible fungi[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 356-364.
[2] YANG Jing, MA Ruhui, YANG Zhixi, XU Shuang, LI Duo, CHEN Lanming.  Growth of two lactic acid bacteria strains and their potential probiotic characteristics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 239-246.
[3] YANG Xiaokuan, CHANG Xuedong . Two kinds of Pyrus Ussurian pears pomace analysis of physicochemical properties and their effects on the production of ham sausage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 95-103.
[4] XU Hongrui, CHEN Xiaolian, SHI Jianqing, SONG Qiongli. Effects of Artemisia argyi on the antioxidant activity, laying performance and egg quality in laying hens under heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(1): 113-119.
[5] WANG Junjun1, WU Xiaocheng2, DING Wenya1, ZHOU Yuanqing1, LIN Xianyong1*. Effects of nitrogen and potassium supply on fruit yield and nutritional quality of aeroponically grown tomato cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 489-496.
[6] Xie Yong*, Chen shiqiang, Chi Xianglian, Liang yichi. Extraction of insoluble dietary fiber from hull of Camellia oleifera Abel and its physicochemical properties[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(2): 149-154.