Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 107-117    DOI: 10.3785/j.issn.1008-9209.2019.12.091
Animal sciences & veterinary medicine     
Effects of high temperature stress on antioxidative and non-specific immunity indices of one-year-old Alosa sapidissima
Xincheng YUAN(),Fei JIANG,Yonghai SHI(),Jiabo XU,Yongshi LIU,Pingping DENG
Shanghai Fisheries Research Institute/Shanghai Fisheries Technical Extension Station, Shanghai 200433, China
Download: HTML   HTML (   PDF(1419KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the adaptability of Alosa sapidissima to high temperature stress, they were placed under three water temperature gradients (24 ℃, 28 ℃, 30 ℃) for 96 h, and the changes of antioxidant enzyme as well as non-specific immune enzyme activities in their liver and serum were studied at different time (0, 3, 6, 12, 24, 48, 96 h) under different water temperatures. The results showed that in the liver, the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in the 28 ℃ and 30 ℃ groups increased over time, and the malondialdehyde (MDA) content increased and then decreased with time, while there were no significant changes in the 24 ℃ group; the activities of SOD and CAT at 48 and 96 h were significantly higher than those in the 24 ℃ group (P<0.05), and the GSH-Px activity and MDA content in the 30 ℃ group at 96 h were significantly higher than those in the other two groups (P<0.05). In the serum, SOD activity and MDA content in the 30 ℃ group showed changes that increased first, then decreased, and then increased with time. The SOD activity and MDA content in the 30 ℃ group at 96 h were significantly higher than those in the 24 ℃ and 28 ℃ groups (P<0.05). The 24 ℃ and 28 ℃ groups remained basically stable. The CAT and GSH-Px activities in the 28 ℃ group at 48 h showed an increasing trend with time, and were significantly greater than the other two groups (P<0.05), while the CAT and GSH-Px activities in the 30 ℃ group showed a decreasing trend with time, and at 24-96 h, it was significantly smaller than the other two groups (P<0.05), and the 24 ℃ group remained basically stable. Under the high temperature stress, the alkaline phosphatase (AKP) and acid phosphatase (ACP) activities of liver in the 28 ℃ and 30 ℃ groups decreased with time (P<0.05), while it was basically remained stable in the 24 ℃ group; the AKP and ACP activities at 48 and 96 h were significantly smaller than those in the 24 ℃ group (P<0.05). The activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the 30 ℃ group increased with time, and the AST activity at 96 h and the ALT activity at 48 h were significantly higher than those in the 24 ℃ group (P<0.05); the AST activity in the 28 ℃ group increased with time, and was significantly higher at 96 h than that in the 24 ℃ group (P<0.05), while the ALT activity increased first and then decreased with time. The above results show that high temperature stress has a significant impact on the antioxidant and non-specific immune enzyme activities of A. sapidissima, causing certain damage to its liver. Therefore, in the process of practical production and industrial aquaculture, it is necessary to avoid high temperature stress response from A. sapidissima, and recommend that the breeding temperature is controlled below 28 ℃.



Key wordsAlosa sapidissima      high temperature stress      antioxidant index      non-specific immunity     
Received: 09 December 2019      Published: 09 March 2021
CLC:  S  
Corresponding Authors: Yonghai SHI     E-mail: xcyuan2016@163.com;yonghais@163.com
Cite this article:

Xincheng YUAN,Fei JIANG,Yonghai SHI,Jiabo XU,Yongshi LIU,Pingping DENG. Effects of high temperature stress on antioxidative and non-specific immunity indices of one-year-old Alosa sapidissima. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 107-117.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.12.091     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/107


高温胁迫对美洲鲥1龄鱼种抗氧化与非特异性免疫相关指标的影响

为探讨美洲鲥(Alosa sapidissima)对高温的适应能力,将其分别置于24 ℃(对照组)、28 ℃和30 ℃的不同水温梯度下胁迫96 h,研究在高温胁迫及不同时间(0、3、6、12、24、48和96 h)下美洲鲥肝和血清中抗氧化酶和非特异性免疫酶活性变化。结果显示:在肝中,28 ℃和30 ℃组过氧化氢酶(catalase, CAT)、谷胱甘肽过氧化物酶(glutathione peroxidase, GSH-Px)、超氧化物歧化酶(superoxide dismutase, SOD)活性随时间增长均呈上升变化,丙二醛(malondialdehyde, MDA)含量呈先升后降的变化趋势,而24 ℃组均无明显变化;其中SOD和CAT活性均于48和96 h时显著大于24 ℃组(P<0.05),而30 ℃组MDA含量和GSH-Px活性在96 h时均显著大于其他2组(P<0.05)。血清中,30 ℃组SOD活性和MDA含量均随时间增长呈先升后降再升的变化,在96 h时均显著大于24 ℃和28 ℃组(P<0.05),而24 ℃和28 ℃组均较稳定。28 ℃组CAT和GSH-Px活性均随时间增长呈上升趋势,并在48 h时显著大于其他2组(P<0.05),而30 ℃组均呈下降趋势,并在24~96 h时显著小于其他2组(P<0.05),24 ℃组均基本稳定。28 ℃和30 ℃组肝中碱性磷酸酶(alkaline phosphatase, AKP)和酸性磷酸酶(acid phosphatase, ACP)活性均随时间增长呈降低的变化趋势,均在48和96 h时显著小于24 ℃组(P<0.05),而24 ℃组基本稳定。30 ℃组谷草转氨酶(aspartate aminotransferase, AST)和谷丙转氨酶(alanine aminotransferase, ALT)活性随时间增长均呈升高趋势,其中,AST活性在96 h和ALT活性在48 h时均显著大于24 ℃组(P<0.05);28 ℃组的AST活性随时间增长逐渐增大,而ALT活性呈先升后降的变化趋势,其中AST活性在96 h时显著大于24 ℃组(P<0.05)。综上所述,高温胁迫对美洲鲥抗氧化和非特异性免疫相关酶活性均产生了显著影响,并对其肝造成了一定的损伤。因此,在实际养殖过程中,应避免因急性高温对美洲鲥产生的应激反应,建议养殖温度控制在28 ℃以下。


关键词: 美洲鲥,  高温胁迫,  抗氧化指标,  非特异性免疫 
Fig. 1 Effects of high temperature stress on SOD activities in liver and serum of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 2 Effects of high temperature stress on CAT activities in liver and serum of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 3 Effects of high temperature stress on GSH-Px activities in liver and serum of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 4 Effects of high temperature stress on MDA contents in liver and serum of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 5 Effects of high temperature stress on AKP activity in liver of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 6 Effects of high temperature stress on ACP activity in liver of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 7 Effects of high temperature stress on AST activity in liver of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
Fig. 8 Effects of high temperature stress on ALT activity in liver of A. sapidissimaDifferent lowercase letters above the bars indicate significant differences among the treatment groups within the same time at the 0.05 probability level.
[1]   田宏杰,庄平,高露姣.生态因子对鱼类消化酶活力影响的研究进展.海洋渔业,2006,28(2):158-162.
TIAN H J, ZHUANG P, GAO L J. Advances on the studies of the effect of ecological factors on activities of digestive enzymes of fish. Marine Fisheries, 2006,28(2):158-162. (in Chinese with English abstract)
[2]   刘峰,刘阳阳,楼宝,等.温度对小黄鱼体内抗氧化酶及消化酶活性的影响.海洋学报,2016,38(12):76-85. DOI:10.3969/j.issn.0253-4193.2016.12.008
LIU F, LIU Y Y, LOU B, et al. Effect of water temperature on antioxidant and digestive enzymes activities in Larimichthys polyactis. Acta Oceanologica Sinica, 2016,38(12):76-85. (in Chinese with English abstract)
doi: 10.3969/j.issn.0253-4193.2016.12.008
[3]   FILHO D W, TORRES M A, ZANIBONI-FILHO E, et al. Effect of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara, Leporinus elongatus (Valenciennes, 1847). Aquaculture, 2005,244(1/2/3/4):349-357. DOI:10.1016/j.aquaculture.2004.11.024
doi: 10.1016/j.aquaculture.2004.11.024
[4]   HANDELAND S O, IMSLAND A K, STEFANSSON S O. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture, 2008,283(1/2/3/4):36-42. DOI:10.1016/j.aquaculture.2008.06.042
doi: 10.1016/j.aquaculture.2008.06.042
[5]   HOCHACHKA P W, SOMERO G N. Biochemical Adaptation:Mechanism and Process in Physiological Evolution. Oxford, UK: Oxford University Press, 2002.
[6]   BOWDEN T J. Modulation of the immune system of fish by their environment. Fish Shellfish Immunology, 2008,25(4):373-383. DOI:10.1016/j.fsi.2008.03.017
doi: 10.1016/j.fsi.2008.03.017
[7]   RAIDA M K, BUCHMANN K. Temperature-dependent expression of immune-relevant genes in rainbow trout following Yersinia Ruckeri vaccination. Disease of Aquatic Organisms, 2007,77(1):41-52. DOI:10.3354/dao01808
doi: 10.3354/dao01808
[8]   施永海,徐嘉波,刘永士,等.敞口池塘和遮阴池塘养殖美洲鲥当年鱼种的生长规律和差异.上海海洋大学学报,2019,28(2):161-170. DOI:10.12024/jsou.20180402263
SHI Y H, XU J B, LIU Y S, et al. Growth regularity and difference of young fish American shad Alosa sapidissima cultured in outdoor and shaded ponds. Journal of Shanghai Ocean University, 2019,28(2):161-170. (in Chinese with English abstract)
doi: 10.12024/jsou.20180402263
[9]   LIMBURG K E, HATTALA K A, KAHNLE A. American shad in its native range//LIMBURG K E, WALDMAN J R. Biodiversity, Status, and Conservation of the World’s Shads. Maryland, US: American Fisheries Society Symposium, 2003:125-140.
[10]   张根玉,朱雅珠,张海明,等.美国鲥鱼人工繁殖技术研究.水产科技情报,2008,35(5):221-223. DOI:10.3969/j.issn.1001-1994.2008.05.003
ZHANG G Y, ZHU Y Z, ZHANG H M, et al. Artificial breeding techniques for American shad Alosa sapidissima. Fisheries Science & Technology Information, 2008,35(5):221-223. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-1994.2008.05.003
[11]   施永海,徐嘉波,陆根海,等.养殖美洲鲥的生长特性.动物学杂志,2017,52(4):638-645. DOI:10.13859/j.cjz.201704011
SHI Y H, XU J B, LU G H, et al. Growth characteristics of cultured American shad Alosa sapidissima. Chinese Journal of Zoology, 2017,52(4):638-645. (in Chinese with English abstract)
doi: 10.13859/j.cjz.201704011
[12]   洪孝友,朱新平,陈昆慈,等.美洲鲥胚胎及仔稚鱼的发育.水生生物学报,2011,35(1):153-162. DOI:10.3724/SP.J.1035.2011.00153
HONG X Y, ZHU X P, CHEN K C, et al. Study on the development of the embryo and larva of American shad, Alosa sapidissima. Acta Hydrobiologica Sinica, 2011,35(1):153-162. (in Chinese with English abstract)
doi: 10.3724/SP.J.1035.2011.00153
[13]   高小强,洪磊,刘志峰,等.美洲西鲱仔鱼不可逆点及仔、稚鱼摄食特性研究.水产学报,2015,39(3):392-400. DOI:10.11964/jfc.20141109566
GAO X Q, HONG L, LIU Z F, et al. The definition of point of no return of larvae and feeding characteristics of Alosa sapidissima larvae and juveniles. Journal of Fisheries of China, 2015,39(3):392-400. (in Chinese with English abstract)
doi: 10.11964/jfc.20141109566
[14]   高小强,洪磊,刘志峰,等.美洲鲥仔稚鱼异速生长模式研究.水生生物学报,2015,39(3):638-644. DOI:10.7541/2015.85
GAO X Q, HONG L, LIU Z F, et al. The study of allometric growth pattern of American shad larvae and juvenile (Alosa sapidissima). Acta Hydrobiologica Sinica, 2015,39(3):638-644. (in Chinese with English abstract)
doi: 10.7541/2015.85
[15]   张勇,徐钢春,杜富宽,等.美洲鲥hsp70的分子特征及其对运输应激的应答.动物学杂志,2016,51(2):268-280. DOI:10.13859/j.cjz.201602013
ZHANG Y, XU G C, DU F K, et al. Molecular characterization of hsp70 and its response to transport stress in American shad Alosa sapidissima. Chinese Journal of Zoology, 2016,51(2):268-280. (in Chinese with English abstract)
doi: 10.13859/j.cjz.201602013
[16]   LATOUR R J, HILTON E J, LYNCH P D, et al. Evaluating the current status of American shad stocks in three Virginia rivers. Marine and Coastal Fisheries, 2012,4(1):302-311. DOI:10.1080/19425120.2012.675978
doi: 10.1080/19425120.2012.675978
[17]   RAABE J K, HIGHTOWER J E. American shad migratory behavior, weight loss, survival, and abundance in a North Carolina river following dam removals. Transactions of the American Fisheries Society, 2014,143(3):673-688. DOI:10.1080/00028487.2014.882410
doi: 10.1080/00028487.2014.882410
[18]   HASSELMAN D J, RICARD D, BENTZEN P. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Molecular Ecology, 2013,22(6):1558-1573. DOI:10.1111/mec.12197
doi: 10.1111/mec.12197
[19]   李大鹏,刘松岩,谢从新,等.水温对中华鲟血清活性氧含量及抗氧化防御系统的影响.水生生物学报,2008,32(3):327-332.
LI D P, LIU S Y, XIE C X, et al. Effects of water temperature on serum content of reactive oxygen species and antioxidant defense system in Chinese sturgeon, Acipenser sinensis. Acta Hydrobiologica Sinica, 2008,32(3):327-332. (in Chinese with English abstract)
[20]   PARIHAR M S, TARANGINI J, TARUNA H, et al. Response of superoxide dismutase, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the fresh water catfish (Heteropneustes fossilis) to short-term elevated temperature. Journal of Thermal Biology, 1997,22(3):51-156. DOI:10.1016/S0306-4565(97)00006-5
doi: 10.1016/S0306-4565(97)00006-5
[21]   GIESEG S P, CUDDIHY S, HILL J V, et al. A comparison of plasma vitamin C and E levels in two Antarctic and two temperate water fish species. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2000,125(3):371-378. DOI:10.1016/S0305-0491(99)00186-8
doi: 10.1016/S0305-0491(99)00186-8
[22]   MARTíNEZ-LVAREZ R M, MORALES A E, SANZ A. Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 2005,15:75-88. DOI:10.1007/s11160-005-7846-4
doi: 10.1007/s11160-005-7846-4
[23]   谢明媚,彭士明,张晨捷,等.急性温度胁迫对银鲳幼鱼抗氧化和免疫指标的影响.海洋渔业,2015,37(6):541-549.
XIE M M, PENG S M, ZHANG C J, et al. Effects of acute temperature stress on antioxidant enzyme activities and immune indexes of juvenile Pampus argenteus. Marine Fisheries, 2015,37(6):541-549. (in Chinese with English abstract)
[24]   王艳妮,刘哲,康玉军,等.热应激对虹鳟部分非特异性免疫指标的影响.农业生物技术学报,2015,23(5):634-642. DOI:10.3969/j.issn.1674-7968.2015.05.009
WANG Y N, LIU Z, KANG Y J, et al. Effects of heat stress on some non-specific immunity parameters in rainbow trout Oncorhynchus mykiss. Journal of Agricultural Biotechnology, 2015,23(5):634-642. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2015.05.009
[25]   王伟,姜志强,孟凡平,等.急性温度胁迫对太平洋鳕仔稚鱼成活率、生理生化指标的影响.水产科学,2012,31(8):463-466.
WANG W, JIANG Z Q, MENG F P, et al. The effects of sharply changes in temperature on survival and indices of physiology and biochemistry in pacific cod Gadus macrocephalus. Fisheries Science, 2012,31(8):463-466. (in Chinese with English abstract)
[26]   VIARENGO A, CANESI L, GARCIA MARTINEZ P, et al. Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallo (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobeus). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1995,111(1):119-126. DOI:10.1016/0305-0491(94)00228-M
doi: 10.1016/0305-0491(94)00228-M
[27]   范耘硕,邵蓬,贾旭颖,等.温度胁迫对大鳞副泥鳅抗氧化与非特异性免疫指标的影响.渔业科学进展,2019,40(2):58-64. DOI:10.19663/j.issn2095-9869.20180306001
FAN Y S, SHAO P, JIA X Y, et al. Effects of temperature stress on the partial antioxidative and non-specific immunity indices of Paramisgurnus dabryanus. Progress in Fishery Sciences, 2019,40(2):58-64. (in Chinese with English abstract)
doi: 10.19663/j.issn2095-9869.20180306001
[28]   HOSEINIFAR S H, ROOSTA Z, HAJIMORADLOO A, et al. The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri). Fish and Shellfish Immunology, 2015,42(2):533-538. DOI:10.1016/j.fsi.2014.12.003
doi: 10.1016/j.fsi.2014.12.003
[29]   强俊,杨弘,王辉,等.急性温度应激对吉富品系尼罗罗非鱼(Oreochromis niloticus)幼鱼生化指标和肝脏HSP70 mRNA表达的影响.海洋与湖沼,2012,43(5):943-953.
QIANG J, YNAG H, WANG H, et al. The effect of acute temperature stress on biochemical indices and expression of liver HSP70 mRNA in GIFT nile tilapia juveniles Oreochromis niloticus. Oceanologia et Limnologia Sinica, 2012,43(5):943-953. (in Chinese with English abstract)
[30]   管标,温海深,刘群,等.急性温度胁迫对虹鳟肝脏代谢酶活性及生长相关基因表达的影响.大连海洋大学学报,2014,29(6):566-571. DOI:10.3969/J.ISSN.2095-1388.2014.06.005
GUAN B, WEN H S, LIU Q, et al. Effects of acute temperature stress on metabolic enzyme activity and gene expression related to growth in rainbow trout Oncorhynchus mykiss. Journal of Dalian Fisheries University, 2014,29(6):566-571. (in Chinese with English abstract)
doi: 10.3969/J.ISSN.2095-1388.2014.06.005
[31]   陈瑛,邱子健,隋淑光,等.棘尾虫酸性磷酸酶的定位及诱导表达.动物学报,2003,49(2):218-223.
CHEN Y, QIU Z J, SUI S G, et al. Localization of ACPase and its expression by induction in Stylonychia mytilus. Acta Zoologica Sinica, 2003,49(2):218-223. (in Chinese with English abstract)
[32]   HUANG Z H, MA A J, WANG X A. The immune response of turbot, Scophthalmus maximus (L.), skin to high water temperature. Journal of Fish Diseases, 2011,34(8):619-627. DOI:10.1111/j.1365-2761.2011.01275.x
doi: 10.1111/j.1365-2761.2011.01275.x
[33]   LEE S M. Review of the lipid and essential fatty acid requirements of rockfish (Sebastes schlegeli). Aquaculture Research, 2001,32(S1):8-17. DOI:10.1046/j.1355-557x.2001.00047.x
doi: 10.1046/j.1355-557x.2001.00047.x
[1] Yongshi LIU,Fei JIANG,Yonghai SHI. Evaluation on nutritional components and nutritive quality in body of young fish Alosa sapidissima cultured in two different patterns[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 243-253.