Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (1): 119-125    DOI: 10.3785/j.issn.1008-9209.2019.10.231
Research articles     
Non-destructive detecting and annual duplicate verification of loquat fruit’s total soluble solids based on self-developed portable near-infrared spectrometer
Yuqing WEI1(),Yuning WANG2,Shaojia LI1,Chongde SUN1,Di WU1()
1.Institute of Fruit Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, Jiangsu, China
Download: HTML   HTML (   PDF(1255KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A self-developed portable non-destructive quality detector was used to collect spectral data of ‘Baiyu’ loquat fruit harvested in 2018 and 2019, respectively, and then chemometric analysis methods were used to build detection model for total soluble solids (TSS) of loquat fruit. Finally, annual verification of independent samples was conducted. The results showed that correlation coefficient of prediction (Rp) and root mean square error of prediction (RMSEP) of the established competitive adaptive reweighted sampling-least squares support vector machines (CARS-LS-SVM) model were 0.818 and 1.453, respectively, which indicated that the self-developed non-destructive detector could achieve rapid non-destructive measurement on TSS of ‘Baiyu’ loquat. Moreover, the grading and screening model improved the first-class fruit rate and the second-class fruit rate from 50.00% to 86.67%, 73.33% to 85.71%, respectively. In conclusion, this study establishes a more practical loquat fruit grading model, which achieves rapid non-destructive measurement of postharvest ‘Baiyu’ loquat fruit in Suzhou area of Jiangsu Province and provides technological support for further improving economic value of loquat fruit and market regulation in Suzhou.



Key wordsloquat      total soluble solids      non-destructive detecting      near-infrared spectroscopy technology      annual duplicate verification     
Received: 23 October 2019      Published: 25 February 2020
CLC:  O 657.33  
Corresponding Authors: Di WU     E-mail: 21816042@zju.edu.cn;di_wu@zju.edu.cn
Cite this article:

Yuqing WEI,Yuning WANG,Shaojia LI,Chongde SUN,Di WU. Non-destructive detecting and annual duplicate verification of loquat fruit’s total soluble solids based on self-developed portable near-infrared spectrometer. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 119-125.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.10.231     OR     http://www.zjujournals.com/agr/Y2020/V46/I1/119


基于自制便携式近红外光谱仪的枇杷果实可溶性固形物无损检测及年度重复验证

采用自主研发的便携式枇杷果实品质无损检测仪,分别采集2018和2019年的枇杷光谱数据,然后采用化学计量学分析方法构建枇杷果实中的重要品质指标——可溶性固形物(total soluble solids, TSS)的检测模型,并开展独立样本年度验证。结果表明:建立的竞争性自适应重加权算法-最小二乘支持向量机(competitive adaptive reweighted sampling-least squares support vector machines, CARS-LS-SVM)模型的预测集相关系数和预测集均方根误差分别为0.818和1.453,说明枇杷果实品质无损检测仪可以实现‘白玉’品种枇杷可溶性固形物的快速无损检测,而且经过分级模型筛选后,一类好果率和二类好果率分别从50.00%和73.33%提升到了86.67%和85.71%。总之,本研究建立了更加实用的枇杷果实分级模型,实现了江苏省苏州地区‘白玉’品种采后枇杷果实的快速无损检测,为进一步提升苏州地区枇杷果实销售的经济价值和市场规范提供了强有力的技术支持。


关键词: 枇杷,  可溶性固形物,  无损检测,  近红外光谱技术,  年度重复验证 
Fig. 1 Schematic diagram (A) and physical map (B) of non-destructive detector for loquat fruit quality
Fig. 2 Light path of non-destructive detector for loquat fruit quality
Fig. 3 Average response signals of near-infrared spectra of loquat fruit harvested in 2018 and 2019

模型

Model

变量选择方法

Variable selection

潜在变量数

No. of latent

variable

变量数

No. of

variable

建模集

Calibration set

预测集

Prediction set

RcRMSECRpRMSEPRPD
PLS1)121000.8021.0620.7651.3581.553
LS-SVM1)1000.8051.1090.6561.6251.325
PLS2)131000.8201.0610.8191.6341.729
LS-SVM2)1000.8690.9180.7962.0271.577
PLS2)UVE9260.7641.1970.8491.4551.850
LS-SVM2)UVE260.7701.1840.8571.4411.881
PLS2)CARS10280.8011.1110.7871.4261.619
LS-SVM2)CARS280.8081.0930.8181.4531.737
Table 1 Regression results of grading model for loquat fruit quality

模型

Model

一类好果率

First-class fruit rate

二类好果率

Second-class fruit rate

已知

Known

预测

Prediction

选果率

Selected fruit rate

已知

Known

预测

Prediction

选果率

Selected fruit rate

全变量PLS FULL-PLS50.0060.00100.0073.3378.57100.00
CARS-LS-SVM50.0071.43100.0073.3381.48100.00
Table 2 Classification results of prediction set of grading model for loquat fruit quality %

模型

Model

一类好果率

First-class fruit rate

二类好果率

Second-class fruit rate

已知

Known

预测

Prediction

选果率

Selected fruit rate

已知

Known

预测

Prediction

选果率

Selected fruit rate

全变量PLS FULL-PLS50.0083.33100.0073.3384.0083.36
CARS-LS-SVM50.0086.6786.6773.3385.7181.82
Table 3 Classification results of prediction set of grading model for loquat fruit quality after raising the sorting standard %
[1]   康孟利,凌建刚,姚凌巧.枇杷果实保鲜技术的应用及研究.农产品加工,2014(6):36-37.
KANG M L, LING J G, YAO L Q. Application and research of loquat fruit preservation technology. Farm Products Processing, 2014(6):36-37. (in Chinese)
[2]   应义斌,刘燕德.水果内部品质光特性无损检测研究及应用.浙江大学学报(农业与生命科学版),2003,29(2):125-129.
YING Y B, LIU Y D. Study and application of optical properties for nondestructive interior quality inspection of fruit. Journal of Zhejiang University (Agriculture and Life Sciences), 2003,29(2):125-129. (in Chinese with English abstract)
[3]   杨忠,黄安民,江泽慧.近红外光谱结合回归分析预测法判别木材的生物腐朽.林业科学,2012,48(10):120-124.
YANG Z, HUANG A M, JIANG Z H. Discrimination of wood biological decay by NIR coupled with regression analysis prediction method. Scientia Silvae Sinicae, 2012,48(10):120-124. (in Chinese with English abstract)
[4]   吴迪,吴洪喜,蔡景波,等.基于无信息变量消除法和连续投影算法的可见-近红外光谱技术白虾种分类方法研究.红外与毫米波学报,2009,28(6):423-427. DOI:10.3724/sp.j.1010.2009.00423
WU D, WU H X, CAI J B, et al. Classifying the species of exopalaemon by using visible and near infrared spectra with uninformative variable elimination and successive projections algorithm. Journal of Infrared and Millimeter Waves, 2009,28(6):423-427. (in Chinese with English abstract)
doi: 10.3724/sp.j.1010.2009.00423
[5]   BALABIN R M, SAFIEVA R Z, LOMAKINA E I. Gasoline classification using near infrared (NIR) spectroscopy data: comparison of multivariate techniques. Analytica Chimica Acta, 2010,671(1/2):27-35. DOI:10.1016/j.aca.2010.05.013
doi: 10.1016/j.aca.2010.05.013
[6]   BOBELYN E, SERBAN A S, NICU M, et al. Postharvest quality of apple predicted by NIR-spectroscopy: study of the effect of biological variability on spectra and model performance. Postharvest Biology & Technology, 2010,55(3):133-143. DOI:10.1016/j.postharvbio.2009.09.006
doi: 10.1016/j.postharvbio.2009.09.006
[7]   王茜,吴习宇,庞兰,等.枇杷内部品质近红外光谱无损检测.食品与机械,2016,32(5):67-70. DOI:10.13652/j.issn.1003-5788.2016.05.015
WANG Q, WU X Y, PANG L, et al. Nondestructive detection of internal quality of loquat by near infrared spectroscopy. Food & Machinery, 2016,32(5):67-70. (in Chinese with English abstract)
doi: 10.13652/j.issn.1003-5788.2016.05.015
[8]   GIOVANELLI G, SINELLI N, BEGHI R, et al. NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology, 2014,87:13-20. DOI:10.1016/j.postharvbio.2013.07.041
doi: 10.1016/j.postharvbio.2013.07.041
[9]   HUANG L, MENG L, ZHU N, et al. A primary study on forecasting the days before decay of peach fruit using near-infrared spectroscopy and electronic nose techniques. Postharvest Biology and Technology, 2017,133:104-112. DOI:10.1016/j.postharvbio.2017.07.014
doi: 10.1016/j.postharvbio.2017.07.014
[10]   孙通,应义斌,刘魁武,等.梨可溶性固形物含量的在线近红外光谱检测.光谱学与光谱分析,2008,28(11):2536-2539. DOI:10.3964/j.issn.1000-0593(2008)11-2536-04
SUN T, YING Y B, LIU K W, et al. Online detection of soluble solids content of pear by near infrared transmission spectrum. Spectroscopy and Spectral Analysis, 2008,28(11):2536-2539. (in Chinese with English abstract)
doi: 10.3964/j.issn.1000-0593(2008)11-2536-04
[11]   王平,聂振朋,罗君琴,等.无损伤检测技术在柑橘果实中的应用.浙江柑橘,2013,30(4):7-10.
WANG P, NIE Z P, LUO J Q, et al. Application of nondestructive detecting technology in citrus fruits. Zhejiang Citrus, 2013,30(4):7-10. (in Chinese)
[12]   ZHU N, HUANG W N, WU D, et al. Quantitative visualization of pectin distribution maps of peach fruits. Scientific Reports, 2017,7(1):9275. DOI:10.1038/s41598-017-09817-7
doi: 10.1038/s41598-017-09817-7
[13]   HUANG L X, ZHOU Y B, MENG L W, et al. Comparison of different CCD detectors and chemometrics for predicting total anthocyanin content and antioxidant activity of mulberry fruit using visible and near infrared hyperspectral imaging technique. Food Chemistry, 2017,224:1-10. DOI:10.1016/j.foodchem.2016.12.037
doi: 10.1016/j.foodchem.2016.12.037
[14]   HUANG L X, LIU H R, ZHANG B, et al. Application of electronic nose with multivariate analysis and sensor selection for botanical origin identification and quality determination of honey. Food & Bioprocess Technology, 2015,8(2):359-370. DOI:10.1007/s11947-014-1407-6
doi: 10.1007/s11947-014-1407-6
[15]   YU K Q, ZHAO Y R, LIU Z Y, et al. Application of visible and near-infrared hyperspectral imaging for detection of defective features in loquat. Food & Bioprocess Technology, 2014,7(11):3077-3087. DOI:10.1007/s11947-014-1357-z
doi: 10.1007/s11947-014-1357-z
[16]   PAN L Q, LU R F, ZHU Q B, et al. Measurement of moisture, soluble solids, sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy. Postharvest Biology and Technology, 2015,102:42-50. DOI:10.1016/j.postharvbio.2015.02.005
doi: 10.1016/j.postharvbio.2015.02.005
[1] CHEN Fangyong, WANG Yin, NI Haizhi, ZHANG Qi, YAN Bangguo. Genetic relationship identification on germplasm resources of two white-flesh loquats from two different producing areas of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 739-746.
[2] YANG Chunping, LI Zhaojun, NING Hong, CHEN Huabao, GONG Guoshu, YANG Jizhi, ZHANG Min. Pretreatment method of forchlorfenuron residues in loquat by HPLC analysis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 350-357.
[3] SUN Hu, ZHANG Li-Li, ZHANG Jing-Ze, HU Dong-Wei. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(3): 237-242.