Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (5): 542-549    DOI: 10.3785/j.issn.1008-9209.2018.12.281
Crop cultivation & physiology     
Effects of monochromatic lights on the growth and antioxidant enzyme activity of Sanghuangporus sanghuang
Yuzhen WANG1(),Yao MA1,2,Qi CHEN1,Hongyan MA1,Jing YANG1,Chen LIU1,Junzhi LI3(),Xiaokui MA1()
1. National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China/College of Life Sciences, Shaanxi Normal University, Xi’an 710100, China
2. Buchang Pharmaceuticals, Xi’an 710075, China
3. Microbiology Institute of Shaanxi, Xi’an 710043, China
Download: HTML   HTML (   PDF(1256KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

This study aimed to explore the influence of different monochromatic lights on the growth and antioxidant enzyme activity of the mycelia of fungus Sanghuangporus sanghuang. We used a light emitting diode (LED)-based light source as a monochromatic light source, including the blue light (455-490 nm), green light (515-540 nm), yellow light (580-600 nm) and red light (610-710 nm), and taking the white light (390-710 nm) as a control. The growth status, morphological characteristics, malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD) and catalase (CAT) of this strain were studied under the irradiation of different monochromatic lights. The results indicated that, compared with those under the white light, the colony diameter of S. sanghuang increased significantly and the mycelia were denser under the red light, and the fungal growth was inhibited under the blue light and green light, but there was a minimal impact on the fungal growth under the yellow light. The SOD activity of mycelium increased significantly after 9 d of irradiation under the blue light, green light and yellow light, respectively (P<0.05), while it decreased significantly after 3 d of irradiation under the red light. The CAT activity of mycelium increased under the four monochromatic lights. On the 11th day, the CAT activity increased significantly (P<0.05), reaching to (31.82±1.60) U/(g?min) under the yellow light. The highest MDA content was observed under the blue light on the 9th day, reaching to (1.07±0.03) mmol/g, which was around 1.16 times under the white light; however, no significant change in the MDA content was observed under the other monochromatic lights. In summary, different monochromatic lights impose different influences on the growth and antioxidant enzyme activity of S. sanghuang, and the red light is more favorable for the growth than the other tested lights.



Key wordsmonochromatic light      Sanghuangporus sanghuang      mycelium growth      antioxidant enzyme activity     
Received: 28 December 2018      Published: 05 December 2019
CLC:  S 567.3  
Corresponding Authors: Junzhi LI,Xiaokui MA     E-mail: wqcfyz@163.com;xianjunzhi@163.com;biomarkuis@gmail.com;xianjunzhi@163.com
Cite this article:

Yuzhen WANG,Yao MA,Qi CHEN,Hongyan MA,Jing YANG,Chen LIU,Junzhi LI,Xiaokui MA. Effects of monochromatic lights on the growth and antioxidant enzyme activity of Sanghuangporus sanghuang. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 542-549.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.12.281     OR     http://www.zjujournals.com/agr/Y2019/V45/I5/542


单色光对桑黄生长及其抗氧化酶活性的影响

为探究不同单色光对桑黄生长及其抗氧化酶活性的影响,以白光(390~710 nm)为对照,采用半导体发光二极管(light emitting diode, LED)灯管为单色光光源,选择蓝光(455~490 nm)、绿光(515~540 nm)、黄光(580~600 nm)和红光(610~710 nm)4种单色光,分别对桑黄进行照射培养,观察桑黄的生长状况及形态特征,分析桑黄菌丝体超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT)活性及丙二醛(malondialdehyde, MDA)含量的变化。结果表明:与对照白光照射相比,在单色光红光照射下桑黄菌落直径显著增加,菌丝更加密集;在蓝光和绿光照射下,桑黄生长受到抑制;黄光照射对桑黄的生长影响较小。与白光照射相比,在第9天后,蓝光、绿光和黄光照射下桑黄菌丝体SOD活性显著增加(P<0.05),而在第3天后,红光照射下菌丝体SOD活性显著降低(P<0.05)。菌丝体CAT活性在蓝光、绿光、黄光和红光长时间照射下比在白光照射下有所增加,在第11天时,CAT活性显著增加(P<0.05),尤其在黄光照射下达到(31.82±1.60) U/(g?min)。在蓝光照射第9天时,菌丝体MDA含量最高,达到(1.07±0.03) mmol/g,约为白光照射下1.16倍,而在其他单色光照射下MDA含量变化不显著。综上表明,不同单色光照射对桑黄生长及其抗氧化酶活性的影响不同,且红光照射更有利于桑黄生长。


关键词: 单色光,  桑黄,  菌丝生长,  抗氧化酶活性 
Fig. 1 Influence of different monochromatic lights on my-celial morphology
Fig. 2 Influence of different monochromatic lights on mycelial dry mass concentration

光线

Light

直径 Diameter/cm

生长速率

Growth rate/(cm/d)

1 d9 d
白光 White light1.4±0.117.1±0.200.71±0.31
蓝光Blue light1.3±0.116.7±0.20*0.68±0.31*
红光Red light1.4±0.107.7±0.20*0.79±0.30*
绿光Green light1.4±0.106.9±0.20*0.69±0.30*
黄光Yellow light1.4±0.107.4±0.20*0.75±0.30*
Table 1 Influence of different monochromatic lights on mycelium growth
Fig. 3 Influence of different monochromatic lights on SOD activitySingle asterisk (*) indicates significant differences between the treatment and the control at the 0.05 probability level.
Fig. 4 Influence of different monochromatic lights on CAT activitySingle asterisk (*) indicates significant differences between the treatment and the control at the 0.05 probability level.
Fig. 5 Influence of different monochromatic lights on the MDA contentSingle asterisk (*) indicates significant differences between the treatment and the control at the 0.05 probability level.
[1]   吴声华,黄冠中,陈愉萍,等.桑黄的分类及开发前景.菌物研究,2016,14(4):187-200.
WU S H, HUANG G Z, CHEN Y P, et al. Taxonomy and development prospects of Sanghuang(Sanghuangporus sanghuang). Journal of Fungal Research, 2016,14(4):187-200. (in Chinese with English abstract)
[2]   WU S H, DAI Y C, HATTORI T, et al. Species clarification for the medicinally valuable ‘sanghuang’ mushroom. Botanical Studies, 2012,53(1):135-149.
[3]   戴玉成,崔宝凯.药用真菌桑黄种类研究.北京林业大学学报,2014,36(5):1-6.
DAI Y C, CUI B K. Progress on the species of medicinal fungus Inonotus sanghuang. Journal of Beijing Forestry University, 2014,36(5):1-6. (in Chinese with English abstract)
[4]   MA X K, MA Y, PETERSON E C, et al. Structural characterization of two endopolysaccharides from Phellinus sp. and their immunologic effects by intragastric administration in a healthy mammalian model. Food & Function, 2018,9(2):1224-1234.
[5]   段庆虎,张应香,龚凤萍,等.光对真菌影响的研究进展.北方园艺,2014(18):213-219.
DUAN Q H, ZHANG Y X, GONG F P, et al. Researches advances on the effect of light on fungi growth and development. Northern Horticulture, 2014(18):213-219. (in Chinese with English abstract)
[6]   BALLARIO P, VITTORIOSO P, MAGRELLI A, et al. White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. The EMBO Journal, 1996,15(7):1650-1657.
[7]   DUNLAP J C, LOROS J J. The Neurospora circadian system. Journal of Biological Rhythms, 2004,19(5):414-424.
[8]   JANIAN P, SYLVIA M, CHRISTIAN K. Seeing the rainbow: light sensing in fungi. Current Opinion in Micro-biology, 2006,9(6):566-571.
[9]   王媛媛,朱涵予,刘冬梅,等.光照对高等真菌生长发育影响的研究进展.食品工业科技,2017,38(21):324-329.
WANG Y Y, ZHU H Y, LIU D M, et al. Research progress in the effects of light on the growth and development of higher fungi. Science and Technology of Food Industry, 2017,38(21):324-329. (in Chinese with English abstract)
[10]   WU J Y, CHEN H B, CHEN M J, et al. Quantitative analysis of LED effects on edible mushroom Pleurotus eryngii in solid and submerged cultures. Journal of Chemical Technology & Biotechnology, 2013,88(10):1841-1846.
[11]   邹莉,姜童童,王玥,等.LED光源不同光质对黑木耳菌丝体生长的影响.安徽农业科学,2014,42(10):2855-2856.
ZOU L, JIANG T T, WANG Y, et al. Effect of different light qualities of LED on the growth of Auricularia auricula mycelia. Journal of Anhui Agricultural Sciences, 2014,42(10):2855-2856. (in Chinese with English abstract)
[12]   应正河,林衍铨,马璐,等.不同光质光量对绣球菌菌丝生长及原基形成的影响.福建农业学报,2013,28(6):538-540.
YING Z H, LIN Y Q, MA L, et al. Effects of different light quality and quantity on mycelial growth and primordium formation of Sparassis crispa. Fujian Journal of Agricul-tural Sciences, 2013,28(6):538-540. (in Chinese with English abstract)
[13]   MA X K, GUO D D, PETERSON E C, et al. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in mammalian system. Food & Function, 2016,7(8):3468-3479.
[14]   XU F, SHI L Y, CHEN W, et al. Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Scientia Horticul-turae, 2014,175:181-186.
[15]   董亮,何永志,王远亮,等.超氧化物歧化酶(SOD)的应用研究进展.中国农业科技导报,2013,15(5):53-58.
DONG L, HE Y Z, WANG Y L, et al. Research progress on application of superoxide dismutase (SOD). Journal of Agricultural Science and Technology, 2013,15(5):53-58. (in Chinese with English abstract)
[16]   冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗SOD活性、MDA和脯氨酸含量的影响.林业科学研究,2002,15(2):197-202.
FENG J C, ZHANG Y J, YANG T Z. Effects of low temperature stress on the membrane-lipid peroxidation and the concentration of free proline in Camptotheca acuminata seedling. Forestry Research, 2002,15(2):197-202. (in Chinese with English abstract)
[17]   高惠滢,胡薇.生物体的抗氧化酶系统概述.生物学教学,2018,43(10):3-5.
GAO H Y, HU W. An overview of the antioxidant enzyme system in organisms. Biology Teaching, 2018,43(10):3-5. (in Chinese)
[18]   MEYER S E, MASI M, CLEMENT S, et al. Mycelial growth rate and toxin production in the seed pathogen Pyrenophora semeniperda: resource trade-offs and temporally varying selection. Plant Pathology, 2015,64:1450-1460.
[19]   许申鸿,杭瑚,李运平.超氧化物歧化酶邻苯三酚测活法的研究及改进.化学通报,2001(8):516-519.
XU S H, HANG H, LI Y P. Study and improvement on the pyrogallol autoxidation assay method for SOD activity assay. Chemistry Bulletin, 2001(8):516-519. (in Chinese with English abstract)
[20]   韩少华,朱靖博,王妍妍.邻苯三酚自氧化法测定抗氧化活性的方法研究.中国酿造,2009,28(6):155-157.
HAN S H, ZHU J B, WANG Y Y. Measurement of the antioxidant activity by pyrogallol autoxidation. China Brewing, 2009,28(6):155-157. (in Chinese with English abstract)
[21]   曲敏,秦丽楠,刘羽佳,等.2种检测SOD酶活性方法的比较.食品安全质量检测学报,2014,5(10):3318-3323.
QU M, QIN L N, LIU Y J, et al. The comparison of two methods of testing superoxide dismutase activity. Journal of Food Safety and Quality, 2014,5(10):3318-3323. (in Chinese with English abstract)
[22]   周强,曹春艳.血清过氧化氢酶的比色测定.哈尔滨医科大学学报,2001,35(6):473-474.
ZHOU Q, CAO C Y. Colorimetric determination of serum catalase. Journal of Harbin Medical University, 2001,35(6):473-474. (in Chinese)
[23]   李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2006:260-261.
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2006:260-261. (in Chinese)
[24]   冯建灿,张玉洁,张秋娟,等.弱光条件下光质对喜树生理生化指标的影响.经济林研究,2008,26(1):1-7.
FENG J C, ZHANG Y J, ZHANG Q J, et al. Effects of different light quality on physiological and biochemical indexes in Camptotheca acuminata under low light condition. Nonwood Forest Research, 2008,26(1):1-7. (in Chinese with English abstract)
[25]   郝俊江,陈向东,兰进.光质对灵芝生长及抗氧化酶系统的影响.中草药,2011,42(12):2529-2534.
HAO J J, CHEN X D, LAN J. Effect of light on growth in Ganoderma lucidum and anti-oxidative enzyme activities. Chinese Traditional and Herbal Drugs, 2011,42(12):2529-2534. (in Chinese with English abstract)
[26]   葛格,李美芽,薛章贤,等.不同光质对桑黄的生长及代谢产物累积影响.中药材,2017,40(5):1026-1030.
GE G, LI M Y, XUE Z X, et al. Effects of different light quality on the growth and metabolites accumulation in Inonotus sanghuang. Journal of Chinese Medicinal Materials, 2017,40(5):1026-1030. (in Chinese with English abstract)
[27]   MIYAZAKI Y, MASUNO K, ABE M, et al. Light-stimulative effects on the cultivation of edible mushrooms by using blue LED: proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 2011. [S. l.]:[s. n.], 2011.
[28]   DONG J Z, LIU M R, LEI C, et al. Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris Link. Applied Biochemistry and Biotechnology, 2012,166(8):2030-2036.
[29]   GAO X L, ZHANG M, TIAN H Q, et al. Effect of LED light quality on respiratory metabolism and activities of related enzymes of Haliotis discus hannai. Aquaculture, 2016,452:52-61.
[1] WANG Shutian,WANG Jinping,ZHANG Jinchi,YUE Jianmin. Effects of exogenous 2,4-epibrassinolide on antioxidant enzyme activities of camphor seedlings under salt stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 476-482.