Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 105-116    DOI: 10.3785/j.issn.1008-9209.2022.02.142
Animal sciences & veterinary medicines     
Effects of the combination of sea cucumber peptide and Cistanche deserticola on hormone regulation and testicular anti-oxidative damage in acute-exercising mice
Xianliang LUO1(),Wangxin LIU1,Jing WANG1,Juan DU2,3,Fengqin FENG1()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hangzhou Kangyuan Food Technology Co. , Ltd. , Hangzhou 310003, Zhejiang, China
3.Zhejiang Nuoyan Biotechnology Co. , Ltd. , Huzhou 313000, Zhejiang, China
Download: HTML   HTML (   PDF(5784KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of the combination of sea cucumber peptide and Cistanche deserticola (SCPCD) on the hormone regulation and testicular anti-oxidative damage of acute-exercising mice were preliminarily explored in this study. The mice were randomly divided into five groups, including the blank group, the control group, SCPCD-low dose group (SCPCD-L) (0.3 mg/g), SCPCD-medium dose group (SCPCD-M) (0.6 mg/g), and SCPCD-high dose group (SCPCD-H) (2.0 mg/g), and all the mice received continuously intragastric administration by different doses of SCPCD for 42 d. An acute exhaustive swimming (AES) model was conducted, and a mating test was carried out on the 45th day. The sexual behavior ability parameters, hormone levels, and anti-oxidative related indexes were finally measured. The results showed that the optimal mass ratio of sea cucumber peptide and Cistanche deserticola in combination of them was 2∶1. AES led to the energy expenditure and accumulation of metabolites in mice (P<0.05), but the acute exhaustive swimming time was prolonged and the contents of lactic acid and blood urea nitrogen were reduced by SCPCD treatments of mice. Besides, AES caused decreases in testosterone and estrogen contents, but they were significantly increased in the SCPCD-M and SCPCD-H (P<0.05). The levels of follicle-stimulating hormone and irisin were significantly reduced (P<0.01) in SCPCD-M, while the adrenocorticotropic hormone content was increased (P<0.05). In addition, the sperm malformation rate decreased in SCPCD treatment, while the sperm motility and total antioxidant capacity of testis were significantly improved (P<0.05). In summary, the SCPCD presented the physiological activities on delaying fatigue, improving testosterone level, and reducing the oxidative damage of sperm and testicular tissue in AES model. These results provide a scientific basis for the development and application of functional foods related to hormone regulation.



Key wordssea cucumber peptide      Cistanche deserticola      acute exhaustive swimming      hormone      oxidative damage     
Received: 14 February 2022      Published: 25 February 2023
CLC:  TS201.2  
Corresponding Authors: Fengqin FENG     E-mail: lxlsky008@163.com;fengfq@zju.edu.cn
Cite this article:

Xianliang LUO,Wangxin LIU,Jing WANG,Juan DU,Fengqin FENG. Effects of the combination of sea cucumber peptide and Cistanche deserticola on hormone regulation and testicular anti-oxidative damage in acute-exercising mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 105-116.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.02.142     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/105


海参肽与肉苁蓉组合物对急性运动小鼠激素水平及睾丸抗氧化损伤的影响

为初步探究海参肽与肉苁蓉组合物对急性运动小鼠激素水平及睾丸抗氧化损伤的影响,将小鼠随机分为空白组、对照组、低剂量组合物组(0.3 mg/g)、中剂量组合物组(0.6 mg/g)和高剂量组合物组(2.0 mg/g),用不同剂量的海参肽与肉苁蓉组合物连续给小鼠灌胃42 d,采用急性力竭游泳造模,并于第45天进行交配实验,记录小鼠性行为学参数,并测定其激素水平及抗氧化相关指标。结果表明:组合物中海参肽与肉苁蓉的最佳质量比为2∶1。急性力竭游泳导致小鼠体内出现能量消耗和代谢产物堆积(P<0.05),而海参肽与肉苁蓉组合物可不同程度地延长小鼠的急性力竭游泳时间,降低其体内乳酸和血尿素氮的含量。急性力竭游泳会引起小鼠睾酮和雌二醇含量下降,但中、高剂量组合物使两者含量显著提升(P<0.05);同时,中剂量组合物显著降低了小鼠促卵泡激素和鸢尾素水平(P<0.01),并显著提高了其促肾上腺皮质激素含量(P<0.05);此外,各剂量组合物明显提高了小鼠精子活力,并且显著降低了小鼠精子畸形率,增强了睾丸组织的总抗氧化能力(P<0.05)。综上所述,在小鼠急性力竭游泳模型中,海参肽与肉苁蓉组合物具有延缓疲劳症状产生、提高睾酮水平、减少精子和睾丸组织氧化损伤的生理活性。本研究为激素水平调节相关功能食品的开发与应用提供了科学依据。


关键词: 海参肽,  肉苁蓉,  急性力竭游泳,  激素,  氧化损伤 
Fig. 1 Molecular weight and amino acid composition of SCP and anti-oxidative capacity of SCPCD
Fig. 2 Experiment flowchart and the body mass and acute exhaustive swimming time of miceBlank group did not do acute exhaustive swimming training but participated in the mating test in figure A. CK: Control group; SCPCD-L: SCPCD-low dose group; SCPCD-M: SCPCD-medium dose group; SCPCD-H: SCPCD-high dose group (the same as below). Single asterisk (*) indicates significant differences between the experiment group and the control group at the 0.05 probability level.

组别

Group

脏器系数 Organ coefficient

肝脏

Liver

肾脏

Kidney

脾脏

Spleen

睾丸

Testis

精囊腺

Seminal vesicle

附睾

Epididymis

阴茎

Penis

空白组 Blank group4.48±0.291.54±0.140.26±0.070.77±0.070.64±0.150.34±0.050.10±0.02
对照组 CK4.60±0.491.53±0.070.28±0.050.81±0.080.64±0.160.35±0.050.09±0.03
低剂量组合物组 SCPCD-L4.84±0.261.58±0.180.30±0.080.78±0.130.76±0.170.36±0.080.10±0.02
中剂量组合物组 SCPCD-M4.80±0.281.61±0.130.30±0.070.81±0.100.73±0.130.36±0.070.11±0.02
高剂量组合物组 SCPCD-H4.51±0.441.55±0.130.24±0.050.83±0.120.68±0.050.35±0.060.11±0.02
Table 1 Organ coefficients of mice

组别

Group

肝糖原

Hepatic glycogen/(mg/g)

肌糖原

Muscle glycogen/(mg/g)

血尿素氮

BUN/(mmol/L)

乳酸

LA/(mmol/L)

一氧化氮

NO/(μmol/L)

空白组 Blank group0.41±0.060.61±0.093.62±0.615.09±0.4658.12±11.78
对照组 CK0.29±0.11#0.32±0.06##4.39±0.70#5.82±0.38#47.38±5.65
低剂量组合物组 SCPCD-L0.29±0.07#0.54±0.23*3.29±0.36**4.47±0.72**53.09±7.39
中剂量组合物组 SCPCD-M0.37±0.090.32±0.08##3.73±0.455.01±0.55*54.18±13.25
高剂量组合物组 SCPCD-H0.27±0.09#0.75±0.17**3.41±0.54**4.86±0.43**61.14±18.53
Table 2 Anti-fatigue related indexes of mice

组别

Group

骑跨潜伏期

Mounting latency/s

骑跨次数

Mounting frequency

射精次数

Ejaculation frequency

插入次数

Intromission frequency

空白组 Blank group568.20±335.304.86±3.843.60±1.8285.00±57.33
对照组 CK532.20±126.405.00±1.382.50±0.9653.71±20.63
低剂量组合物组 SCPCD-L494.00±118.709.62±2.745.17±1.42104.50±19.29
中剂量组合物组 SCPCD-M398.70±96.408.14±2.584.75±1.49128.20±71.03
高剂量组合物组 SCPCD-H564.80±132.607.00±1.513.14±0.63118.00±35.48
Table 3 Sexual behavior ability parameters of mice
Fig. 3 Serum hormone levels of mice
Fig. 4 Epididymis histopathology (A), sperm morphology (B), and sperm malformation rate (C)
Fig. 5 Histopathological analysis of testis
Fig. 6 Anti-oxidative indexes in testis of mice
[1]   郭三维,琚建军,李铮.男性性腺功能减退症的认识与对策[J].上海医学,2021,44(5):302-306. DOI:10.19842/j.cnki.issn.0253-9934.2021.05.004
GUO S W, JU J J, LI Z. Understanding and countermeasures of male hypogonadism[J]. Shanghai Medical Journal, 2021, 44(5): 302-306. (in Chinese with English abstract)
doi: 10.19842/j.cnki.issn.0253-9934.2021.05.004
[2]   NUTSCH V L, WILL R G, TOBIANSKY DJ, et al. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats[J]. Hormones and Behavior, 2017, 96: 4-12. DOI: 10.1016/j.yhbeh.2017.08.008
doi: 10.1016/j.yhbeh.2017.08.008
[3]   SGRÒ P, LUIGI L D. Sport and male sexuality[J]. Journal of Endocrinological Investigation, 2017, 40(9): 911-923. DOI: 10.1007/s40618-017-0652-8
doi: 10.1007/s40618-017-0652-8
[4]   COLSON M H, CUZIN B, FAIX A, et al. Current epidemiology of erectile dysfunction, an update[J]. Sexologies, 2018, 27(1): e7-e13. DOI: 10.1016/j.sexol.2018.01.018
doi: 10.1016/j.sexol.2018.01.018
[5]   LI Z M, LIU N, JIANG Y P, et al. Vitexin alleviates streptozotocin-induced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis[J]. Chemico-Biological Interactions, 2019, 297(5): 119-129. DOI: 10.1016/j.cbi.2018.10.013
doi: 10.1016/j.cbi.2018.10.013
[6]   ZHANG W W, WEI Y F, CAO X X, et al. Enzymatic preparation of Crassostrea oyster peptides and their promoting effect on male hormone production[J]. Journal of Ethnophar-macology, 2021, 264(10): 113382. DOI: 10.1016/j.jep.2020.113382
doi: 10.1016/j.jep.2020.113382
[7]   李明亮,姜盛,郭颖,等.紫苏籽肽对环磷酰胺致性功能损伤大鼠的改善作用[J].食品科学,2021,42(5):177-186. DOI: 10.7506/spkx1002-6630-20200311-180
LI M L, JIANG S, GUO Y, et al. Ameliorative effect of Perilla seed peptide on cyclophosphamide-induced sexual function impairment of rats[J]. Food Science, 2021, 42(5): 177-186. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20200311-180
[8]   ZHANG Z R, SU G W, ZHOU F B, et al. Alcalase-hydrolyzed oyster (Crassostrea rivularis) meat enhances antioxidant and aphrodisiac activities in normal male mice[J]. Food Research International, 2019, 120: 178-187. DOI: 10.1016/j.foodres.2019.02.033
doi: 10.1016/j.foodres.2019.02.033
[9]   XU C, ZHANG R, WEN Z Y. Bioactive compounds and biological functions of sea cucumbers as potential functional foods[J]. Journal of Functional Foods, 2018, 49: 73-84. DOI: 10.1016/j.jff.2018.08.009
doi: 10.1016/j.jff.2018.08.009
[10]   宋淑亮,王欢,梁浩,等.海参肽的分离纯化及其对NIH/3T3细胞胶原蛋白分泌的影响[J].现代食品科技,2017,33(3):22-28. DOI:10.13982/j.mfst.1673-9078.2017.3.004
SONG S L, WANG H, LIANG H, et al. Isolation and purification of sea cucumber peptide and its impact on the secretion of collagen by NIH/3T3 cell[J]. Modern Food Science and Technology, 2017, 33(3): 22-28. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2017.3.004
[11]   LIN L Z, YANG K, ZHENG L, et al. Anti-aging effect of sea cucumber (Cucumaria frondosa) hydrolysate on fruit flies and D-galactose-induced aging mice[J]. Journal of Functional Foods, 2018, 47: 11-18. DOI: 10.1016/j.jff.2018.05.033
doi: 10.1016/j.jff.2018.05.033
[12]   YE J, SHEN C H, HUANG Y Y, et al. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model[J]. Journal of Science Food and Agriculture, 2017, 97(13): 4548-4556. DOI: 10.1002/jsfa.8322
doi: 10.1002/jsfa.8322
[13]   CAI N, LUO W Q, YAO L J, et al. Activation of murine RAW264.7 macrophages by oligopeptides from sea cucumber (Apostichopus japonicus) and its molecular mechanisms[J]. Journal of Functional Foods, 2020, 75: 104229. DOI: 10.1016/j.jff.2020.104229
doi: 10.1016/j.jff.2020.104229
[14]   XU X M, LIANG R, LI D M, et al. Evaluation of sea cucumber peptides-assisted memory activity and acetylation modification in hippocampus of test mice based on scopolamine-induced experimental animal model of memory disorder[J]. Journal of Functional Foods, 2020, 68: 103909. DOI: 10.1016/j.jff.2020.103909
doi: 10.1016/j.jff.2020.103909
[15]   王启新.肉苁蓉抗疲劳与促生殖作用的补肾阳活性筛选与机制初探[D].北京:北京中医药大学,2020.
WANG Q X. Screening and mechanism of tonifying kidney-yang activity of Cistanche deserticola for anti-fatigue and promoting reproduction[D]. Beijing: Beijing University of Chinese Medicine, 2020. (in Chinese with English abstract)
[16]   LUO X L, LIU W X, ZHONG H, et al. Synergistic effect of combined oyster peptide and ginseng extracts on anti-exercise-fatigue and promotion of sexual interest activity in male ICR mice[J]. Journal of Functional Foods, 2021, 86: 104700. DOI: 10.1016/j.jff.2021.104700
doi: 10.1016/j.jff.2021.104700
[17]   骆贤亮,晏永球,冯凤琴.牡蛎肽与人参提取物配伍提高雄性小鼠性功能及抗疲劳作用研究[J].食品工业科技,2022,43(1):366-374. DOI:10.13386/j.issn1002-0306.2021030384
LUO X L, YAN Y Q, FENG F F. Effect of combined oyster peptide and ginseng extracts on improvement of sexual function and anti-fatigue in male mice[J]. Science and Technology of Food Industry, 2022,43(1): 366-374. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2021030384
[18]   王振,李锐,阎政礼,等.腐霉利对雄性青春期小鼠睾丸和精子的损伤[J].卫生研究,2020,49(6):949-954. DOI:10.19813/j.cnki.weishengyanjiu.2020.06.013
WANG Z, LI R, YAN Z L, et al. Injury of procymidone on testis and sperm in the male adolescent mice [J]. Journal of Hygiene Research, 2020, 49(6): 949-954. (in Chinese with English abstract)
doi: 10.19813/j.cnki.weishengyanjiu.2020.06.013
[19]   范甜甜,杨治峰,薄存香,等.农达对小鼠睾丸组织损伤和氧化应激的影响[J].现代预防医学,2017,45(2):319-323.
FAN T T, YANG Z F, BO C X, et al. Effect of roundup on morphology of testis and oxidative stress in mice[J]. Modern Preventive Medicine, 2017, 45(2): 319-323. (in Chinese with English abstract)
[20]   MIN S G, JO Y J, PARK S H. Potential application of static hydrothermal processing to produce the protein hydrolysates from porcine skin by-products[J]. LWT-Food Science Technology, 2017, 83: 18-25. DOI: 10.1016/j.lwt.2017.04.073
doi: 10.1016/j.lwt.2017.04.073
[21]   HU M, DU J, DU L D, et al. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice[J]. Journal of Functional Foods, 2020, 65: 103725. DOI: 10.1016/j.jff.2019.103725
doi: 10.1016/j.jff.2019.103725
[22]   PASIAKOS S M, BERRYMAN C E, KARL J P, et al. Effects of testosterone supplementation on body composition and lower-body muscle function during severe exercise- and diet-induced energy deficit: a proof-of-concept, single centre, randomised, double-blind, controlled trial[J]. eBioMedicine, 2019, 46: 411-422. DOI: 10.1016/j.ebiom.2019.07.059
doi: 10.1016/j.ebiom.2019.07.059
[23]   MA L L, SHANG Y N, ZHU Y D, et al. Study on microencapsulation of Lactobacillus plantarum LIP-1 by emulsification method[J]. Journal of Food Process Engineering, 2020, 43(8): e13437. DOI: 10.1111/jfpe.13437
doi: 10.1111/jfpe.13437
[24]   LI J, SUN Q R, MENG Q R, et al. Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca)[J]. International Journal of Biological Macromolecules, 2017, 95: 1305-1311. DOI: 10.1016/j.ijbiomac.2016.11.031
doi: 10.1016/j.ijbiomac.2016.11.031
[25]   ZHANG Y Y, RYU B M, CUI Y H, et al. A peptide isolated from Hippocampus abdominalis improves exercise performance and exerts anti-fatigue effects via AMPK/PGC-1α pathway in mice[J]. Journal of Functional Foods, 2019, 61: 103489. DOI: 10.1016/j.jff.2019.103489
doi: 10.1016/j.jff.2019.103489
[26]   罗齐军,鲁顺保,李红,等.牡蛎多肽对长期大负荷训练大鼠血睾酮、LH和StAR mRNA表达的影响[J].江西师范大学学报(自然科学版),2013,37(6):611-616. DOI:10.16357/j.cnki.issn1000-5862.2013.06.013
LUO Q J, LU S B, LI H, et al. The effect of oyster peptides supplementation serum testosterone, LH content and StAR mRNA expression in rats during the long-term and high loading training[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2013, 37(6): 611-616. (in Chinese with English abstract)
doi: 10.16357/j.cnki.issn1000-5862.2013.06.013
[27]   KOSKENNIEMI J J, VIRTANEN H E, TOPPARI J. Testicular growth and development in puberty[J]. Current Opinion in Endocrinology & Diabetes and Obesity, 2017, 24(3): 215-224. DOI: 10.1097/MED.0000000000000339
doi: 10.1097/MED.0000000000000339
[28]   KRAEMER W J, RATAMESS N A, HYMER W C, et al. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise[J]. Frontiers in Eedocrinology, 2020, 11: 33. DOI: 10.3389/fendo.2020.00033
doi: 10.3389/fendo.2020.00033
[29]   ROSSETTI M L, STEINER J L, GORDON B S. Androgen-mediated regulation of skeletal muscle protein balance[J]. Molecular and Cellular Endocrinology, 2017, 447: 35-44. DOI: 10.1016/j.mce.2017.02.031
doi: 10.1016/j.mce.2017.02.031
[30]   马淑慧,孙永欣,李学军,等.柞蚕蛹多肽对ICR雄性小鼠性功能的影响[J].蚕业科学,2021,47(5):476-481. DOI:10.13441/j.cnki.cykx.2021.05.011
MA S H, SUN Y S, LI X J, et al. Effect of Antheraea pernyi pupa polypeptide on sexual function of ICR male mice[J]. Science of Sericulture, 2021, 47(5): 476-481. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2021.05.011
[31]   AJDŽANOVIĆ V Z, FILIPOVIĆ B R, ŠOŠIĆ JURJEVIĆ B T, et al. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male[J]. Fundamental & Clinical Pharmacology, 2017, 31(4): 372-382. DOI: 10.1111/fcp.12277
doi: 10.1111/fcp.12277
[32]   胡顺宇,唐显平,杨锋,等.鸢尾素在运动改善骨代谢中的作用研究[J].中国骨质疏松杂志,2020,26(10):1555-1560. DOI:10.3969/j.issn.1006-7108.2020.10.032
HU S Y, TANG X P, YANG F, et al. Study on the role of irisin in improving bone metabolism by exercise[J]. Chinese Journal of Osteoporosis, 2020, 26(10): 1555-1560. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-7108.2020.10.032
[33]   TEKIN S, BEYTUR A, ERDEN Y, et al. Effects of intracerebroventricular administration of irisin on the hypothalamus-pituitary-gonadal axis in male rats[J]. Journal of Cellular Physiology, 2019, 234(6): 8815-8824. DOI: 10.1002/jcp.27541
doi: 10.1002/jcp.27541
[34]   KLOSTERHOFF R R, KANAZAWA L K S, FURLANETTO A L D M, et al. Anti-fatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata)[J]. International Journal of Biological Macromolecules, 2018, 109: 1147-1153. DOI: 10.1016/j.ijbiomac.2017.11.105
doi: 10.1016/j.ijbiomac.2017.11.105
[35]   郭富双,陈圣杰,杨春兰,等.复方辣木颗粒剂影响雄性小鼠性功能的实验研究[J].蛇志,2019,31(1):23-25. DOI:10.3969/j.issn.1001-5639.2019.01.008
GUO F S, CHEN S J, YANG C L, et al. Experimental study on the effect of compound moringa granules on sexual function of male mice[J]. Journal of Snake, 2019, 31(1): 23-25. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-5639.2019.01.008
[36]   王晓琛,刘强.精子活性氧与运动及受精的关系[J].中国男科学杂志,2021,35(4):65-67.
WANG X C, LIU Q. The relationship between sperm reactive oxygen species and motility and fertilization[J]. Chinese Journal of Andrology, 2021, 35(4): 65-67. (in Chinese)
[37]   JIAO N, CHEN Y P, ZHU Y H, et al. Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway[J]. Life Sciences, 2020, 256: 116736. DOI: 10.1016/j.lfs.2019.116736
doi: 10.1016/j.lfs.2019.116736
[38]   NJOKU R C, ABARIKWU S O, UWAKWE A A, et al. Dietary fluted pumpkin seeds induce reversible oligospermia and androgen insufficiency in adult rats[J]. Systems Biology in Reproductive Medicine, 2019, 65(6): 437-450. DOI: 10.1080/19396368.2019.1612482
doi: 10.1080/19396368.2019.1612482
[39]   LI R, MENG X H, ZHANG Y, et al. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats[J]. PeerJ, 2016, 4: e2000. DOI: 10.7717/peerj.2000
doi: 10.7717/peerj.2000
[40]   党瑜慧.芹菜素对丙烯腈致雄性大鼠亚慢性生殖损伤保护作用的研究[D].甘肃,兰州:兰州大学,2019.
DANG Y H. Protective effects of apigenin against acrylonitrile-induced subchronic reproduction injury in male rats[D]. Lanzhou, Gansu: Lanzhou University, 2019. (in Chinese with English abstract)
[1] Aining LI,Baihui JIANG,Guixin LI,Zhongjie DING,Shaojian ZHENG. Molecular mechanisms on ethylene regulation of nutrient deficiency stress responses in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 14-22.
[2] Shengyi BAI,Xiaomin WANG,Wenjuan LIU,Guoxin CHENG,Meng GUO,Wenkong YAO,Yanming GAO,Jianshe LI. Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 31-44.
[3] Jing JIN,Yiqing Lü,Weizhong HE,Zaifa SHU,Jianhui YE,Yuerong LIANG. Effects of different shade treatments on the biosynthesis of main phytohormones in the leaves of tea plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 45-54.
[4] Yunrui CHEN,Zhijun MAO,Zhaowei LI,Kai FAN. Research status and progress in structure and function of protein phosphatase 2C in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 11-20.
[5] Xin LIU,Yong CHEN,Lirong SHEN. Protective effects of major royal jelly proteins on reproductive function of mice during perimenopausal period[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 751-759.
[6] LIU Mengqi, ZHANG Guanglu, GUO Changquan, YANG Tingyu, MI Yuling. Attenuating effect of taurine on oxidative damage and Nrf2/HO-1 pathway induced by cadmium in testicular cells of embryonic chickens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 619-628.
[7] LIU Tian, CHEN Xiaoyu, ZHU Zhiwei, YU Fuxian, HUANG Jing, JIA Ruoxin, SHI Fangxiong, PAN Jianzhi. Screening of follicle-stimulating hormone dose-dependent expression genes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 162-171.
[8] HOU Yong, HOU Yanbin, YAO Lei, DAI Binyang, QIAN Lichun, FAN Jinghui. Effects of chilled trash fish and different carbohydrate levels in puffed feed on growth performance and glucose metabolism of snakehead[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 199-208.
[9] LONG Shiyun, JIANG Dongmei, CHEN Ziyu, GUAN Cheng, YI Zhixin, KANG Bo. Effect of exogenous spermidine on expression profile of reproductive hormone receptors in mouse ovaries.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 247-252.
[10] Li Li, Xu Qi, Chen Yang, Huang Xuetao, Li Liumeng, Tao Zhonglian, Chen Guohong. Correlation between the polymorphism of growth hormone gene with the growth performance in Shaoxing ducks[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 365-370.
[11] WANG Li-hong1,2, GAO Qin-xue2, ZHANG Wei2, JIN Chun-fang3, LI Yu-chun4, WANG Feng1-. Correlation analysis between PCRSSCP polymorphisms of luteinizing hormone receptor gene (LHR) and reproductive traits in sheep[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 362-369.
[12] ZHANG Wei, ZHANG Junsheng, ZHANG Yao, WANG Lihong. Analysis of gonadotropin releasing hormone receptor gene (GnRHR) expression map in digestive system of Hu sheep[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 387-392.