Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 31-44    DOI: 10.3785/j.issn.1008-9209.2022.03.081
Horticultural sciences     
Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones
Shengyi BAI1(),Xiaomin WANG1,2,3,4(),Wenjuan LIU1,Guoxin CHENG1,2,3,4,Meng GUO1,2,3,4,Wenkong YAO1,2,3,4,Yanming GAO1,2,3,4,Jianshe LI1,2,3,4
1.School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
2.Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, Ningxia, China
3.Ningxia Modern Facility Horticulture Engineering and Technology Research Center, Yinchuan 750021, Ningxia, China
4.Ningxia Facility Horticulture Technology Innovation Center (Ningxia University), Yinchuan 750021, Ningxia, China
Download: HTML   HTML (   PDF(2754KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Screening of stable reference genes was significant when the real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to study gene expression. To identify the most stable reference genes in tomato induced by different hormones, the leaves of susceptible tomato ‘Moneymaker’ (MM) and resistant tomato inbred line 62579, which were treated with abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) for 0, 24, 48, and 120 h, respectively, were used for qRT-PCR amplification. In the current study, the expression stabilities of eight tomato candidate reference genes, including EF1α, L33, Act, Ubi, GAPDH, UK, CAC, and TIP41, were analyzed using geNorm, NormFinder, and BestKeeper softwares. The results revealed that the average CT values of eight candidate reference genes ranged from 26 to 34. Based on the data from these softwares, L33 and Ubi, L33 and EF1α,as well as EF1α and L33 were considered to be the stably expressed reference genesin tomato induced by ABA, MeJA, and SA, respectively. In conclusion, L33 is the most stably expressed gene among all studied candidate reference genes in tomato induced by different hormones. The most stable reference genes screened in this study will provide a calibration basis for the expression analyses of differential genes and the research on molecular mechanisms in tomato response to exogenous hormone treatments in the future.



Key wordstomato      hormone induction      real-time fluorescent quantitative polymerase chain reaction (qRT-PCR)      reference gene     
Received: 08 March 2022      Published: 07 March 2023
CLC:  S641.2  
Corresponding Authors: Xiaomin WANG     E-mail: baishengyi0602@163.com;wangxiaomin_1981@163.com
Cite this article:

Shengyi BAI,Xiaomin WANG,Wenjuan LIU,Guoxin CHENG,Meng GUO,Wenkong YAO,Yanming GAO,Jianshe LI. Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 31-44.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.03.081     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/31


不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选

为筛选出在不同激素诱导下番茄中较为稳定的内参基因,本研究以脱落酸(abscisic acid, ABA)、茉莉酸甲酯(methyl jasmonate, MeJA)、水杨酸(salicylic acid, SA)3种外源激素分别诱导处理0、24、48、120 h的感病番茄品种‘Moneymaker’(MM)和抗病番茄自交系62579叶片为试验材料,通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)进行扩增,利用geNorm、NormFinder和BestKeeper 3个软件分析EF1αL33ActUbiGAPDHUKCACTIP41这8个番茄候选内参基因的表达稳定性。结果表明,8个候选内参基因的平均CT值为26~34。综合3个软件的分析结果发现,在ABA诱导下,番茄中较稳定表达的内参基因为L33Ubi;在MeJA诱导下,番茄中较稳定表达的内参基因为L33EF1α;在SA诱导下,番茄中较稳定表达的内参基因为EF1αL33。综上所述,L33基因是番茄在不同激素诱导下表达最稳定的候选内参基因。本研究筛选的最稳定内参基因将为后续番茄响应外源激素处理的差异基因表达分析和分子机制研究提供校准依据。


关键词: 番茄,  激素诱导,  实时荧光定量聚合酶链反应,  内参基因 
序号No.

基因名称

Gene name

基因符号

Gene

symbol

引物序列(5→3

Primer sequence (5→3)

产物长度

Product

length/bp

文献

Reference

1Elongation factor 1αEF1αF: ACAGGCGTTCAGGTAAGGAA120[27]
R: GAGGGTATTCAGCAAAGGTCTC
250S ribosomal protein L33L33F: GGGAAGAGGCTGGGATACATC138[9]
R: AGGAGGCAAATTGGACTTGAAC
3β-actinActF: GCTCCACCAGAGAGGAAATACAGT107[9]
R: CATACTCTGCCTTTGCAATCCA
4UbiquitinUbiF: GGACGGACGTACTCTAGCTGAT134[27]
R: AGCTTTCGACCTCAAGGGTA
5

Glyceraldehyde-3-phosphate

dehydrogenase

GAPDHF: ACCACAAATTGCCTTGCTCCCTTG110[28]
R: ATCAACGGTCTTCTGAGTGGCTGT
6Uridylate kinaseUKF: TGGTAAGGGCACCCAATGTGCTAA114[29]
R: ATCATCGTCCCATTCTCGGAACCA
7Clathrin adaptor complexes medium subunitCACF: CCTCCGTTGTGATGTAACTGG173[28]
R: ATTGGTGGAAAGTAACATCATCG
8TAP42-interacting proteinTIP41F: ATGGAGTTTTTGAGTCTTCTGC235[23]
R: GCTGCGTTTCTGGCTTAGG
Table 1 Primer information of tomato candidate reference genes
Fig. 1 Testing results of RNA integrity in tomato induced by different hormonesA. Susceptible tomato MM; B. Resistant tomato 62579. M: DL2000 marker.
Fig. 2 Agarose gel electrophoresis analysis of PCR products of eight candidate reference genes in tomatoM: DL2000 marker; 1: EF1α;2: L33;3: Act;4: Ubi;5: GAPDH;6: UK;7: CAC;8: TIP41.
Fig. 3 Distribution of CT values of eight candidate reference genes in tomato
Fig. 4 Expression stability (M) of eight candidate reference genes analyzed by geNorm softwareA. ABA-induced treatment; B. MeJA-induced treatment; C. SA-induced treatment.
Fig. 5 Pairwise variation (V) of eight candidate reference genes analyzed by geNorm softwareA. ABA-induced treatment; B. MeJA-induced treatment; C. SA-induced treatment.

处理

Treatment

排序

Ranking

MM62579MM&62579

基因

Gene

表达稳定值

S

基因

Gene

表达稳定值

S

基因

Gene

表达稳定值

S

ABA1L330.048Ubi0.094Act0.220
2Act0.159EF1α0.113L330.222
3Ubi0.166L330.184CAC0.269
4CAC0.190UK0.202Ubi0.272
5GAPDH0.256GAPDH0.220UK0.290
6UK0.271Act0.263EF1α0.305
7EF1α0.433CAC0.309GAPDH0.319
8TIP410.544TIP410.636TIP410.574
MeJA1EF1α0.124L330.144EF1α0.134
2L330.137UK0.148L330.136
3Ubi0.159EF1α0.159UK0.239
4CAC0.200TIP410.222Ubi0.259
5GAPDH0.230Ubi0.224TIP410.281
6UK0.266GAPDH0.367GAPDH0.299
7TIP410.339Act0.603Act0.570
8Act0.539CAC0.804CAC0.593
SA1L330.042EF1α0.063EF1α0.142
2EF1α0.093L330.081Ubi0.170
3Ubi0.179Act0.169L330.176
4GAPDH0.207Ubi0.175Act0.234
5Act0.293UK0.195UK0.283
6CAC0.296GAPDH0.225CAC0.304
7UK0.358CAC0.323GAPDH0.349
8TIP410.534TIP410.507TIP410.509
Table 2 Analysis results from NormFinder software
参量 Parameter12345678
MM
基因 GeneActL33EF1αUKCACUbiTIP41GAPDH
几何平均数 Geometric mean29.1927.9726.6333.1430.1427.0931.2230.77
最小值 Minimum28.7327.6426.1332.4629.9026.7930.5130.47
最大值 Maximum29.7428.2627.3933.6130.2927.3632.3231.08
标准差 s0.350.240.470.370.120.150.550.16
变异系数 CV/%1.200.851.781.110.410.551.750.52
皮尔逊相关系数 r0.9870.9210.8010.7140.6410.6210.4930.096
62579
基因 GeneUbiL33GAPDHEF1αUKCACActTIP41
几何平均数 Geometric mean27.5229.4731.2627.7134.6331.4530.2732.30
最小值 Minimum26.9128.7730.6526.8733.8130.3029.8831.71
最大值 Maximum28.1730.4832.0028.6235.4732.4130.8232.81
标准差 s0.370.530.370.460.600.730.280.46
变异系数 CV/%1.341.791.181.671.742.310.911.43
皮尔逊相关系数 r0.9980.9850.9840.9810.9540.9530.8000.733
MM&62579
基因 GeneL33UKCACEF1αActUbiGAPDHTIP41
几何平均数 Geometric mean28.7133.8730.7927.1629.7027.3031.0131.75
最小值 Minimum27.6432.4629.9026.1328.7326.7930.4730.51
最大值 Maximum30.4835.4732.4128.6230.6528.1732.0032.81
标准差 s0.750.760.780.670.520.330.350.69
变异系数 CV/%2.622.252.542.461.761.201.142.17
皮尔逊相关系数 r0.9870.9590.9580.9430.9110.9000.8570.786
Table 3 Expression stability of eight candidate reference genes under ABA induction analyzed by BestKeeper software
参量 Parameter12345678
MM
基因 GeneActEF1αUKL33GAPDHCACUbiTIP41
几何平均数 Geometric mean29.7226.3333.3227.7330.5930.1926.5830.52
最小值 Minimum28.6526.1032.7227.4430.3330.0126.3930.18
最大值 Maximum30.4526.6533.7228.0930.9430.3726.8531.03
标准差 s0.620.160.300.180.240.180.130.30
变异系数 CV/%2.080.600.900.660.800.580.500.97
皮尔逊相关系数 r0.8730.6260.6140.584-0.298-0.385-0.441-0.610
62579
基因 GeneTIP41L33CACUKEF1αUbiGAPDHAct
几何平均数 Geometric mean27.1424.5427.2829.7623.0522.8727.4226.74
最小值 Minimum26.3324.1326.3329.2822.8122.1626.8726.22
最大值 Maximum28.1425.0329.3230.0023.3223.3527.8927.57
标准差 s0.530.291.000.240.220.440.350.44
变异系数 CV/%1.951.173.680.810.931.921.271.63
皮尔逊相关系数 r0.9910.9760.9140.8800.8650.8290.617-0.203
MM&62579
基因 GeneL33EF1αUbiUKGAPDHTIP41CACAct
几何平均数 Geometric mean26.0824.6324.6631.4928.9628.7828.7028.19
最小值 Minimum24.1322.8122.1629.2826.8726.3326.3326.22
最大值 Maximum28.0926.6526.8533.7230.9431.0330.3730.45
标准差 s1.591.641.851.781.581.691.581.49
变异系数 CV/%6.096.647.505.655.465.855.505.27
皮尔逊相关系数 r0.9960.9940.9910.9890.9820.9810.9230.914
Table 4 Expression stability of eight candidate reference genes under MeJA induction analyzed by BestKeeper software
参量 Parameter12345678
MM
基因 GeneGAPDHCACUbiL33UKActEF1αTIP41
几何平均数 Geometric mean31.2230.6227.2428.0933.7729.5026.3830.68
最小值 Minimum30.6630.0026.8427.9933.1428.7826.2330.19
最大值 Maximum31.5631.1127.5928.2134.5429.9926.5931.36
标准差 s0.280.350.240.100.380.430.120.35
变异系数 CV/%0.901.130.890.351.121.470.441.14
皮尔逊相关系数 r0.9900.9630.9470.8270.8260.7100.597-0.971
62579
基因 GeneEF1αL33TIP41CACUKUbiGAPDHAct
几何平均数 Geometric mean27.3329.1331.1631.0934.5227.7631.1430.24
最小值 Minimum27.1828.9730.6930.6634.2727.5730.7630.12
最大值 Maximum27.5729.4531.7431.6934.9027.9031.4530.33
标准差 s0.120.160.470.300.240.110.200.06
变异系数 CV/%0.440.541.490.960.700.410.640.19
皮尔逊相关系数 r0.9730.8050.7370.7200.6870.6580.485-0.682
MM&62579
基因 GeneEF1αL33UbiUKCACActTIP41GAPDH
几何平均数 Geometric mean26.8528.6127.5034.1530.8629.8630.9231.18
最小值 Minimum26.2327.9926.8433.1430.0028.7830.1930.66
最大值 Maximum27.5729.4527.9034.9031.6930.3331.7431.56
标准差 s0.480.520.280.470.350.400.460.25
变异系数 CV/%1.771.821.021.371.131.341.500.80
皮尔逊相关系数 r0.9470.9430.9310.8680.8050.7970.3500.260
Table 5 Expression stability of eight candidate reference genes under SA induction analyzed by BestKeeper software

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
L334311322212.111
Ubi1163146163.222
Act5642611754.113
UK6416454524.114
EF1α7157263444.335
CAC1734735634.336
GAPDH3575578375.567
TIP418888887887.898
Table 6 Ranking of eight candidate reference genes stability in tomato induced by ABA

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
L331112124211.671
EF1α1111312521.892
UK6336233443.783
Ubi3443547634.334
TIP417557458165.335
GAPDH4665665755.566
CAC5884886376.337
Act8778771886.788
Table 7 Ranking of eight candidate reference genes stability in tomato induced by MeJA

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
EF1α1112117111.781
L331111234221.892
Ubi3333423633.333
Act5445346865.004
UK7557555545.335
CAC6766762455.446
GAPDH4674671785.567
TIP418888888377.338
Table 8 Ranking of eight candidate reference genes stability in tomato induced by SA
[1]   赵丹丹,陈景超,黄兆峰,等.刺萼龙葵种子中适宜内参基因的筛选[J].植物保护,2020,46(3):40-46, 51. DOI:10.16688/j.zwbh.2019105
ZHAO D D, CHEN J C, HUANG Z F, et al. Selection of suitable reference genes in Solanum rostratum seeds[J]. Plant Protection, 2020, 46(3): 40-46, 51. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2019105
[2]   张兰,檀鹏辉,滕珂,等.草地早熟禾荧光定量PCR分析中内参基因的筛选[J].草业学报,2017,26(3):75-81. DOI:10.11686/cyxb2016297
ZHANG L, TAN P H, TENG K, et al. Screening of reference genes for real-time fluorescence quantitative PCR in Kentucky bluegrass[J]. Acta Prataculturae Sinica, 2017, 26(3): 75-81. (in Chinese with English abstract)
doi: 10.11686/cyxb2016297
[3]   张燕梅,王瑞芳,杨子平,等.剑麻内参基因筛选与稳定表达分析[J].热带作物学报,2019,40(11):2166-2173. DOI:10.3969/j.issn.1000-2561.2019.11.010
ZHANG Y M, WANG R F, YANG Z P, et al. Screening of suitable reference genes for qRT-PCR normalization in sisal[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2166-2173. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2019.11.010
[4]   赵艺蕊,黄春颖,王克涛,等.山核桃实时荧光定量PCR分析中内参基因的筛选与验证[J].果树学报,2022,39(1):10-21. DOI:10.13925/j.cnki.gsxb.202310289
ZHAO Y R, HUANG C Y, WANG K T, et al. Screening and verification of internal reference genes by real time quantitative PCR analysis in Carya cathayensis [J]. Journal of Fruit Science, 2022, 39(1): 10-21. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.202310289
[5]   丁苏芹,李玺,唐东芹.小苍兰实时荧光定量PCR中的内参基因筛选[J].南京林业大学学报(自然科学版),2020,44(3):19-25. DOI:10.3969/j.issn.1000-2006.201909021
DING S Q, LI X, TANG D Q. Screening on reference genes for real-time fluorescent quantitative PCR of Freesia hybrida [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 19-25. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2006.201909021
[6]   SMITHA P K, VISHNUPRIYAN K, KAR A S, et al. Genome wide search to identify reference genes candidates for gene expression analysis in Gossypium hirsutum [J]. BMC Plant Biology, 2019, 19: 405. DOI: 10.1186/s12870-019-1988-3
doi: 10.1186/s12870-019-1988-3
[7]   韩晓雪,韩佳轩,姜晶.番茄在非生物胁迫下实时定量RT-PCR中内参基因的筛选[J].分子植物育种,2015,13(4):822-831. DOI:10.13271/j.mpb.013.000822
HAN X X, HAN J X, JIANG J. Screening the reference genes for the studies of quantitative real-time RT-PCR in tomato under abiotic stress[J]. Molecular Plant Breeding, 2015, 13(4): 822-831. (in Chinese with English abstract)
doi: 10.13271/j.mpb.013.000822
[8]   姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,33(2):389-396. DOI:10.3969/j.issn.1000-4440.2017.02.024
JIANG J, WANG Y L, ZHAO L P, et al. Selection of tomato reference genes for qRT-PCR[J]. Jiangsu Journal of Agricul-tural Sciences, 2017, 33(2): 389-396. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4440.2017.02.024
[9]   ZHENG Z, NONOMURA T, APPIANO M, et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica [J]. PLoS ONE, 2013, 8(7): e70723. DOI: 10.1371/journal.pone.0070723
doi: 10.1371/journal.pone.0070723
[10]   崔菲菲,孟川,王彦华,等.大白菜-结球甘蓝易位系实时荧光定量PCR内参基因的筛选[J].华北农学报,2018,33(5):60-67. DOI:10.7668/hbnxb.2018.05.008
CUI F F, MENG C, WANG Y H, et al. Reference genes selection for quantitative real-time PCR in Chinese cabbage-cabbage translocation lines[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 60-67. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2018.05.008
[11]   ZHOU X H, LIU J, ZHUANG Y. Selection of appropriate reference genes in eggplant for quantitative gene expression studies under different experimental conditions[J]. Scientia Horticulturae, 2014, 176: 200-207. DOI: 10.1016/j.scienta.2014.07.010
doi: 10.1016/j.scienta.2014.07.010
[12]   CHEN H, YANG Z Q, HU Y, et al. Reference genes selection for quantitative gene expression studies in Pinus massoniana L.[J]. Trees, 2016, 30(3): 685-696. DOI: 10.1007/s00468-015-1311-3
doi: 10.1007/s00468-015-1311-3
[13]   覃慧娟,范付华,周紫晶.激素处理下马尾松茎干组织qPCR内参基因的筛选[J].农业生物技术学报,2022,30(2):393-401. DOI:10.3969/j.issn.1674-7968.2022.017
QIN H J, FAN F H, ZHOU Z J. Screening of qPCR internal reference genes in stem tissue of Pinus massoniana under hormone treatment[J]. Journal of Agricultural Biotechnology, 2022, 30(2): 393-401. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2022.017
[14]   VANGUILDER H D, VRANA K E, FREEMAN W M. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 2008, 44(5): 619-626. DOI: 10.2144/000112776
doi: 10.2144/000112776
[15]   ZHANG H, HAN W, DE SMET I, et al. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem[J]. The Plant Journal, 2010, 64(5): 764-774. DOI: 10.1111/j.1365-313X.2010.04367.x
doi: 10.1111/j.1365-313X.2010.04367.x
[16]   TON J, FLORS V, MAUCH-MANI B. The multifaceted role of ABA in disease resistance[J]. Trends in Plant Science, 2009, 14(6): 310-317. DOI: 10.1016/j.tplants.2009.03.006
doi: 10.1016/j.tplants.2009.03.006
[17]   陈田硕.脱落酸对番茄防御灰叶斑病的功能研究[D].山东,泰安:山东农业大学,2020.
CHEN T S. The role of ABA in tomato resistance to grey leaf spot disease[D]. Tai’an, Shandong: Shandong Agricultural University, 2020. (in Chinese with English abstract)
[18]   范志金,刘秀峰,刘凤丽,等.水杨酸在诱导系统获得抗性中的信号传导作用[J].农药,2004(6):257-260. DOI:10.3969/j.issn.1006-0413.2004.06.005
FAN Z J, LIU X F, LIU F L, et al. The role of salicylic acid in systemic acquired resistance signaling pathways[J]. Chinese Journal of Pesiticides, 2004(6): 257-260. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-0413.2004.06.005
[19]   YU X X, ZHANG W J, ZHANG Y, et al. The roles of methyl jasmonate to stress in plants[J]. Functional Plant Biology, 2019, 46(3): 197-212. DOI: 10.1071/FP18106
doi: 10.1071/FP18106
[20]   胡彦江,张茹琴,王瑞荣,等.水杨酸、乙酰水杨酸对番茄幼苗叶片中PPO和POD的诱导作用[J].西北植物学报,2007,27(2):262-266. DOI:10.3321/j.issn:1000-4025.2007.02.009
HU Y J, ZHANG R Q, WANG R R, et al. Induction of polyphenol oxidase and peroxidase activity in tomato seedling leaves by salicylic acid and acetylsalicylic acid[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 262-266. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2007.02.009
[21]   董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26(4):289-293.
DONG H S. Expressive regulation of plant disease defense genes in relation with hereditability mechanism of induced resistance[J]. Acta Phytopathologica Sinica, 1996, 26(4): 289-293. (in Chinese)
[22]   DU M M, ZHAO J H, TZENG D T W, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. The Plant Cell, 2017, 29(8): 1883-1906. DOI: 10.1105/tpc.16.00953
doi: 10.1105/tpc.16.00953
[23]   UEHARA T, SUGIYAMA S, MATSUURA H, et al. Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid[J]. Plant & Cell Physiology, 2010, 51(9): 1524-1536. DOI: 10.1093/pcp/pcq109
doi: 10.1093/pcp/pcq109
[24]   VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): research0034.1. DOI: 10.1186/gb-2002-3-7-research0034
doi: 10.1186/gb-2002-3-7-research0034
[25]   ANDERSEN C L, JENSEN J L, ØRNTOF T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2018, 64(15): 5245-5250. DOI: 10.1158/0008-5472.CAN-04-0496
doi: 10.1158/0008-5472.CAN-04-0496
[26]   PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. DOI: 10.1023/b:bile.0000019559.84305.47
doi: 10.1023/b:bile.0000019559.84305.47
[27]   XIAO Z, SUN X B, LIU X Q, et al. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don[J]. Frontiers in Plant Science, 2016, 7: 1547. DOI: 10.3389/fpls.2016.01547
doi: 10.3389/fpls.2016.01547
[28]   DIE J V, ROMÁN B, NADAL S, et al. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions[J]. Planta, 2010, 232: 145-153. DOI: 10.1007/s00425-010-1158-1
doi: 10.1007/s00425-010-1158-1
[29]   SCHOLTZ J J, VISSER B. Reference gene selection for qPCR gene expression analysis of rust-infected wheat[J]. Physiological and Molecular Plant Pathology, 2013, 81: 22-25. DOI: 10.1016/j.pmpp.2012.10.006
doi: 10.1016/j.pmpp.2012.10.006
[30]   刘霞宇.基于实时荧光定量PCR的忍冬内参基因筛选[D].山西,太原:山西农业大学,2017.
LIU X Y. Selection of candidate reference genes for gene expression studies by quantitative real-time PCR in Lonicera japonica Thunb.[D]. Taiyuan, Shanxi: Shanxi Agricultural University, 2017. (in Chinese with English abstract)
[31]   吴建阳,何冰,杜玉洁,等.利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J].现代农业科技,2017(5):278-281. DOI:10.3969/j.issn.1007-5739.2017.05.174
WU J Y, HE B, DU Y J, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017(5): 278-281. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-5739.2017.05.174
[32]   刘小飞,于波,黄丽丽,等.杜鹃红山茶实时定量PCR内参基因筛选及验证[J].广东农业科学,2020,47(12):203-211. DOI:10.16768/j.issn.1004-874x.2020.12.021
LIU X F, YU B, HUANG L L, et al. Screening and validation of reference genes of Camellia azalea by quantitative real-time PCR[J]. Guangdong Agricultural Sciences, 2020, 47(12): 203-211. (in Chinese with English abstract)
doi: 10.16768/j.issn.1004-874x.2020.12.021
[33]   乔永刚,王勇飞,曹亚萍,等.药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J].园艺学报,2020,47(6):1153-1164. DOI:10.16420/j.issn.0513-353x.2019-1005
QIAO Y G, WANG Y F, CAO Y P, et al. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale [J]. Acta Horticulturae Sinica, 2020, 47(6): 1153-1164. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2019-1005
[34]   LACERDA A L M, FONSECA L N, BLAWID R, et al. Reference gene selection for qPCR analysis in tomato-bipartite begomovirus interaction and validation in additional tomato-virus pathosystems[J]. PLoS ONE, 2015, 10(8): e0136820. DOI: 10.1371/journal.pone.0136820
doi: 10.1371/journal.pone.0136820
[35]   HONG Y, TANG X J, HUANG H, et al. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum[J]. BMC Genomics, 2015, 16: 202. DOI: 10.1186/s12864-015-1428-1
doi: 10.1186/s12864-015-1428-1
[36]   WANG Q, ISHIKAWA T, MICHIUE T, et al. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper[J]. International Journal of Legal Medicine, 2012, 126(6): 943-952. DOI: 10.1007/s00414-012-0774-7
doi: 10.1007/s00414-012-0774-7
[37]   BUSTIN S A, BENES V, GARSON J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 2009, 55(4): 611-622. DOI: 10.1373/clinchem.2008.112797
doi: 10.1373/clinchem.2008.112797
[38]   吝月爱.玉米在非生物胁迫和激素处理条件下实时荧光定量PCR内参基因的选择[D].四川,成都:四川农业大学,2012.
LIN Y A. Reference gene selection for quantitative real-time PCR in maize treated with abiotic stresses and hormones[D]. Chengdu, Sichuan: Sichuan Agricultural University, 2012. (in Chinese with English abstract)
[39]   ZHANG Y T, ZHU L J, XUE J Y, et al. Selection and verification of appropriate reference genes for expression normalization in Cryptomeria fortunei under abiotic stress and hormone treatments[J]. Genes, 2021, 12(6): 791-809. DOI: 10.3390/genes12060791
doi: 10.3390/genes12060791
[40]   宋雄.欧芹不同逆境条件下适宜内参基因的筛选[D].江苏,南京:南京农业大学,2016.
SONG X. Screening of stable reference genes under different stress conditions in parsley[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2016. (in Chinese with English abstract)
[41]   DEKKERS B J W, WILLEMS L, BASSEL G W, et al. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds[J]. Plant and Cell Physiology, 2012, 53(1): 28-37. DOI: 10.1093/pcp/pcr113
doi: 10.1093/pcp/pcr113
[1] Hongji TAN,Yanming GAO,Jianshe LI,Wenlu WEI. Effects of different functional fertilizers on quality, yield and substrate environment of substrate-grown cherry tomatoes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 434-442.
[2] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[3] Xiaohui WANG,Kunpeng ZHOU. Research on recognition methods for red tomato image in the natural environment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 395-403.
[4] Zhongyan ZHANG,Luwei HU,Jiawei CHEN,Zhujun ZHU,Biao ZHU. Agronomic character identification and ornamental value evaluation of dwarf ornamental tomato germplasm resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 158-170.
[5] Fushun ZHENG,Xiaomin WANG,Guohua LI,Honglei LI,Pengze ZHOU,Lin WANG,Shengyi BAI,Peijun LIU,Xueyan ZHANG,Xinhua HU,Jinjun FU,Yanming GAO,Jianshe LI. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 171-181.
[6] Ying LIANG,Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG. Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 151-160.
[7] Yuanliang MO,Yushi WANG,Jiwen WANG. Identification for internal reference genes in different periods of granulosa cells of Tianfu meat geese.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 376-384.
[8] TIAN Ping, LI Jianshe, GAO Yanming. Effects of brackish water irrigation on tomato yield and fruit sucrose metabolism in sunlight greenhouse[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 667-677.
[9] CHEN Shanshan, ZHOU Yekai, ZHANG Zhiming, ZHANG Min, WANG Qiaomei. Effects of carbon dioxide enrichment on fruit development and quality of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 318-326.
[10] TAO Xiaoya, LI Jiayin, MAO Linchun. Effect of abscisic acid on wound-healing process in postharvest tomato fruit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 321-326.
[11] Zheng Nenzhu, Li Li, Xin Qingwu, Miao Zhongwei, Zhu Zhiming, Liu Fenghui, Wu Jianfei, Lu Lizhi. Influence of reference genes on expression of TYR, MITF and ASIP genes in tissues of Silky Fowl.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 732-740.
[12] Liang Xifeng, Cai Yangyang, Wang Yongwei. Experiment on physical and mechanical properties of tomato seedling pot for automatic vegetable transplanter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 616-622.
[13] Wang Yan, Pan Changtian, Wang Jie, Qin Li, Zou Tao, Lu Gang. Effects of gibberellin on tomato stigma exsertion and hormonerelated gene expression under moderate heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 449-457.
[14] Zhang Zhi, Hu Xiaohui, Zou Zhirong* . Prediction of grey mould disease from greenhouse tomato based on radical basis function neural network.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 197-202.
[15] WANG Junjun1, WU Xiaocheng2, DING Wenya1, ZHOU Yuanqing1, LIN Xianyong1*. Effects of nitrogen and potassium supply on fruit yield and nutritional quality of aeroponically grown tomato cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 489-496.