Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (2): 171-181    DOI: 10.3785/j.issn.1008-9209.2020.08.141
Horticulture     
Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits
Fushun ZHENG1(),Xiaomin WANG1,2,3,4(),Guohua LI1,Honglei LI1,Pengze ZHOU1,Lin WANG1,Shengyi BAI1,Peijun LIU1,Xueyan ZHANG1,2,4(),Xinhua HU5,Jinjun FU5,Yanming GAO1,2,3,4,Jianshe LI1,2,3,4
1.School of Agriculture, Ningxia University, Yinchuan 750021, China
2.Ningxia Modern Facility Horticulture Engineering and Technology Research Center, Yinchuan 750021, China
3.Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, China
4.Ningxia Facility Horticulture Technology Innovation Center (Ningxia University), Yinchuan 750021, China
5.Ningxia Jufeng Seedlings Limited Liability Company, Yinchuan 750021, China
Download: HTML   HTML (   PDF(4582KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problems of large quantity of tomato germplasm resources, high conservation difficulty, heavy renewal burden and low breeding efficiency for fine varieties in Ningxia region, the genetic diversity of 20 phenotypic traits for 480 tomato germplasm resources was analyzed by correlation analysis, principal component analysis and cluster analysis. Euclidean distance and unweighted pair-group method with arithmetic means (UPGMA) were used, and then the methods of random sampling, preferential sampling and deviation sampling were separately used to construct core collections according to 10% sampling ratio, and the representation of core collections was evaluated. The results showed that the 480 tomato germplasms had rich genetic diversity and could be divided into six groups when the Euclidean distance was 1.25. Three groups of core collections R1, P1 and D1 were successfully constructed, among which R1 and D1 separately constructed by random sampling method and deviation sampling method were consistent with the construction principle of core collection, and all the three groups of core collections had good heterogeneity, and P1 constructed by preferential sampling method obtained greater genetic variation. In a word, the core collections of tomato germplasm resources constructed in Ningxia provide scientific methods for the conservation of tomato germplasm resources and breeding of new varieties, and also provide theoretical references for the related research of germplasm resources.



Key wordsNingxia      tomato      germplasm resources      phenotypic traits      core collections     
Received: 14 August 2020      Published: 25 April 2021
CLC:  S 641.2  
Corresponding Authors: Xiaomin WANG,Xueyan ZHANG     E-mail: 1172892128@qq.com;wangxiaomin_1981@163.com;zhangxueyan123@sina.com
Cite this article:

Fushun ZHENG,Xiaomin WANG,Guohua LI,Honglei LI,Pengze ZHOU,Lin WANG,Shengyi BAI,Peijun LIU,Xueyan ZHANG,Xinhua HU,Jinjun FU,Yanming GAO,Jianshe LI. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 171-181.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.08.141     OR     http://www.zjujournals.com/agr/Y2021/V47/I2/171


基于表型性状的宁夏番茄种质资源核心种质构建

为解决宁夏地区番茄种质资源数量多、保存难度高、更新负担大、优良品种选育效率低等问题,本研究通过对480份番茄种质资源的20个表型性状进行田间调查,采用相关性分析、主成分分析、聚类分析进行遗传多样性分析;利用欧氏距离和不加权类平均法,分别选用随机取样法、优先取样法和偏离度取样法,按10%取样比例分别构建核心种质,并对其进行代表性评价。结果表明:该480份番茄种质资源具有丰富的遗传多样性,在欧式距离为1.25时,分为6大类群;成功构建出3组核心种质R1、P1和D1,其中,分别通过随机取样法和偏离度取样法构建的R1和D1符合核心种质的构建原则;3组核心种质均具有良好的异质性,且通过优先取样法构建的P1获得了更大的遗传变异。本研究构建的宁夏地区番茄核心种质,可为该地区番茄种质资源的保存和新品种选育提供科学方法,也可为该种质资源的相关研究提供理论参考。


关键词: 宁夏,  番茄,  种质资源,  表型性状,  核心种质 

性状

Trait

遗传多样性指数

Genetic diversity index (H′)

分布频率 Distribution frequency/%
012345678
花序类型 Inflorescence type1.8112.9274.7912.29
成熟果色 Color of mature fruit1.000.630.211.048.1328.9559.791.25
叶色 Leaf color0.7451.6747.291.04
叶片着生状态 Leaf state0.6953.3346.67
绿肩 Green shoulder0.4483.9616.04
生长势 Growth potential1.033.757.0840.4248.75
裂果性 Fruit cracking0.4384.7915.24
坐果性 Fruit setting1.1442.5040.849.587.08
Table 1 Genetic diversity analysis of qualitative traits of 480 tomato germplasm resources

性状

Trait

均值

Mean

最大值

Maximum

最小值

Minimum

标准差

Standard

deviation

变异系数

Coefficient of

variation/%

遗传多样性指数

Genetic diversity

index (H′)

单果质量 Mass per fruit/g151.61263.5012.1060.6740.021.62

果梗洼大小

Size of corky area around pedicel scar/mm

29.1340.535.517.4625.621.61

果梗洼木栓化大小

Suberification size of pedicel scar/mm

11.9617.673.113.3027.631.77

商品果纵径

Longitudinal diameter of fruit/mm

55.9174.1614.6910.8119.331.30

商品果横径

Transverse diameter of fruit/mm

64.0288.5314.6814.9423.331.37
硬度 Hardness/(kg/cm2)3.074.731.520.5517.952.07

可溶性固形物含量

Soluble solid content/%

6.2311.404.201.6612.361.71
心室数 Number of locules4.657.002.001.2827.571.46
果肉厚 Flesh thickness/mm7.059.812.461.5522.031.71

首花序节位

Leaf node below the first inflorescence

7.0510.004.001.0514.851.43

单花序果数

Number of fruit per inflorescence

6.3823.004.003.5655.851.19

畸形果率

Percentage of abnormal fruit/%

1.0228.300.003.82374.510.40
Table 2 Genetic diversity analysis of quantitative traits of 480 tomato germplasm resources

参量

Parameter

123456789101112
11
20.815**1
30.839**0.826**1
40.819**0.800**0.842**1
50.865**0.847**0.879**0.918**1
60.451**0.460**0.458**0.477**0.486**1
7-0.553**-0.570**-0.612**-0.627**-0.653**-0.412**1
80.782**0.740**0.744**0.734**0.775**0.413**-0.537**1
90.827**0.807**0.811**0.817**0.844**0.452**-0.599**0.743**1
10-0.121**-0.001-0.133**-0.074-0.103*-0.0320.117*-0.081-0.0741
11-0.810**-0.818**-0.803**-0.798**-0.847**-0.485**0.591**-0.708**-0.813**0.105*1
120.0610.0410.0820.0800.093*0.033-0.0540.0300.079-0.104*-0.099*1
Table 3 Correlation analysis of quantitative traits of 480 tomato germplasm resources

性状

Trait

主成分 Principal component
1234
成熟果色 Color of mature fruit-0.0940.648-0.075-0.356
单果质量 Mass per fruit0.9130.031-0.007-0.071
果梗洼大小 Size of corky area around pedicel scar0.904-0.1070.0700.008
果梗洼木栓化大小 Suberification size of pedicel scar0.9160.033-0.015-0.005
商品果纵径 Longitudinal diameter of fruit0.9180.0530.0080.017
商品果横径 Transverse diameter of fruit0.9490.035-0.0210.002
硬度 Hardness0.562-0.0030.0910.085
可溶性固形物含量 Soluble solid content-0.810-0.1270.020-0.046
心室数 Number of locules0.833-0.0190.061-0.014
果肉厚 Flesh thickness0.904-0.0290.0130.000
首花序节位 Leaf node below the first inflorescence-0.107-0.6460.3070.112
单花序果数 Number of fruit per inflorescence-0.9050.0160.013-0.019
花序类型 Inflorescence type-0.790-0.0120.058-0.135
叶片着生状态 Leaf state-0.0650.2610.4350.422
叶色 Leaf color-0.0110.4290.5250.165
绿肩 Green shoulder0.0070.125-0.4540.285
生长势 Growth potential0.125-0.4660.057-0.423
裂果性 Fruit cracking-0.098-0.163-0.2960.695
畸形果率 Percentage of abnormal fruit0.0940.071-0.595-0.049
坐果性 Fruit setting-0.7790.062-0.0170.029
特征值 Eigen value8.8241.3931.2381.125
贡献率 Contribution rate/%44.1206.9676.1905.623
累计贡献率 Cumulative contribution rate/%44.12051.08857.27862.901
Table 4 Principal component analysis of phenotypic traits of 480 tomato germplasm resources
Fig. 1 Cluster analysis of 480 tomato germplasm resources

类型

Type

份数 Number
R1P1D1
大粉番茄 Pink tomato1559
大红番茄 Red tomato212227
樱桃番茄 Cherry tomato9198
其他 Others324
Table 5 Information table of each core collection material
差异百分率 Percentage differenceR1P1D1
极差符合率 Coincidence rate of range92.4100.098.3
变异系数变化率 Variation rate of coefficient of variation108.5131.9113.3
均值差异百分率 Percentage difference of mean0600
方差差异百分率 Percentage difference of variance57520
Table 6 Percentage difference between core collection and initial population
性状 Trait参量 Parameter原群体 Initial populationR1P1D1

成熟果色

Color of mature fruit

均值 Mean6.496.526.696.58
方差 Variance0.650.94*1.41**0.93*
变异系数 CV/%12.4314.8317.7614.65

单果质量

Mass per fruit

均值 Mean/g151.61146.45101.92**150.22
方差 Variance3 688.795 015.916 529.86**5 096.99
变异系数 CV/%40.0648.3679.2947.53

果梗洼大小

Size of corky area around

pedicel scar

均值 Mean/mm27.2625.7520.68**27.00
方差 Variance55.8375.96101.68**72.73
变异系数 CV/%27.4133.8448.7731.59

果梗洼木栓化大小

Suberification size of

pedicel scar

均值 Mean/mm11.9611.629.41**11.87
方差 Variance10.9413.5219.12**14.07
变异系数 CV/%27.6434.6546.4831.60

商品果纵径

Longitudinal diameter

of fruit

均值 Mean/mm55.9153.5147.91**55.23
方差 Variance117.06148.74247.69**165.73*
变异系数 CV/%19.3522.7932.8523.31

商品果横径

Transverse diameter

of fruit

均值 Mean/mm64.0261.3452.47**64.18
方差 Variance223.59242.99465.78**325.25*
变异系数 CV/%23.3625.4141.1428.10

硬度

Hardness

均值 Mean/(kg/cm2)3.073.092.943.10
方差 Variance0.300.340.48*0.55**
变异系数 CV/%17.9318.9623.5623.91

可溶性固形物含量

Soluble solid content

均值 Mean/%6.236.476.94*6.34
方差 Variance2.032.694.10**3.11*
变异系数 CV/%22.8725.3629.1927.80

心室数

Number of locules

均值 Mean4.654.523.71**4.67
方差 Variance1.651.742.59**2.27
变异系数 CV/%27.6129.2343.4332.25

果肉厚

Flesh thickness

均值 Mean/mm7.056.835.83**7.02
方差 Variance2.422.893.92**3.13
变异系数 CV/%22.0524.9133.9725.20

首花序节位

Leaf node below the

first inflorescence

均值 Mean7.056.986.966.92
方差 Variance1.101.471.62*1.91**
变异系数 CV/%14.8717.3518.2719.96

单花序果数

Number of fruit per

inflorescence

均值 Mean6.386.469.23**6.54
方差 Variance12.7013.4928.82**17.62
变异系数 CV/%55.8556.8658.1764.17

花序类型

Inflorescence type

均值 Mean2.172.182.26**2.17
方差 Variance0.020.020.04**0.03*
变异系数 CV/%6.316.098.397.46

叶片着生状态

Leaf state

均值 Mean2.472.462.462.50
方差 Variance0.250.250.250.26
变异系数 CV/%20.2020.4920.4820.20

叶色

Leaf color

均值 Mean2.492.502.542.50
方差 Variance0.270.300.340.34
变异系数 CV/%20.9221.8422.9023.32

绿肩

Green shoulder

均值 Mean0.160.170.250.17
方差 Variance0.140.140.19*0.14
变异系数 CV/%229.38221.76175.04221.76

生长势

Growth potential

均值 Mean4.344.314.10*4.21
方差 Variance0.590.770.730.81
变异系数 CV/%17.7420.3920.8721.33

裂果性

Fruit cracking

均值 Mean0.150.150.170.21
方差 Variance0.130.130.140.17
变异 系数CV/%239.33238.00225.97195.24

畸形果率

Percentage of abnormal fruit

均值 Mean1.021.481.412.18
方差 Variance14.6524.95**23.32**40.82**
变异系数 CV/%376.10337.30343.27293.07

坐果性

Fruit setting

均值 Mean2.812.923.31**2.71
方差 Variance0.770.890.990.93
变异系数 CV/%31.2532.2629.9735.68
Table 7 Difference comparisons between core collection and initial population
[1]   牛玉,刘维侠,杨衍,等.樱桃番茄核心种质资源构建策略.热带作物学报,2019,40(12):2356-2363. DOI:10.3969/j.issn.1000-2561.2019.12.007
NIU Y, LIU W X, YANG Y, et al. Construction strategy of core germplasm of cherry tomato. Chinese Journal of Tropical Crops, 2019,40(12):2356-2363. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2019.12.007
[2]   祝光涛.番茄重要农艺性状的全基因组关联分析及野生种质在栽培种的渐渗分析.北京:中国农业科学院,2015.
ZHU G T. Genome-wide association studies of important agronomic traits in tomato and analysis of wild germplasm introgression in cultivars. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[3]   刘旭.中国作物种质资源研究现状与发展//2018中国作物学会学术年会论文摘要集.北京:中国作物学会,2018:2.
LIU X. Research status and development of crop germplasm resources in China//Abstracts of Papers of 2018 Annual Meeting of Chinese Crop Society. Beijing: Chinese Crop Society, 2018:2. (in Chinese)
[4]   FRANKEL O H. Genetic perspectives of germplasm conservation//Genetic Manipulation: Impact on Man and Society. Cambridge, UK: Cambridge University Press, 1984:161-170.
[5]   徐盛春,郑华章,冯志娟,等.菜用豌豆核心种质构建的关键策略.浙江大学学报(农业与生命科学版),2019,45(4):401-406. DOI:10.3785/j.issn.1008-9209.2018.06.210
XU S C, ZHENG H Z, FENG Z J, et al. Key construction strategies for core germplasm collection in vegetable pea (Pisum sativum). Journal of Zhejiang University (Agriculture and Life Sciences), 2019,45(4):401-406. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2018.06.210
[6]   潘英华,徐志健,梁云涛.广西普通野生稻群体结构解析与核心种质构建.植物遗传资源学报,2018,19(3):498-509. DOI:10.13430/j.cnki.jpgr.2018.03.015
PAN Y H, XU Z J, LIANG Y T. Genetic structure and core collection of common wild rice (Oryza rufipogon Griff.) in Guangxi. Journal of Plant Genetic Resources, 2018,19(3):498-509. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2018.03.015
[7]   牟书靓,牛海龙,张春宵,等.结合农艺性状和SSR标记构建吉林省花生初级核心种质.吉林农业大学学报, 2017,39(4):392-402. DOI:10.13327/j.jjlau.2017.3325
MOU S L, NIU H L, ZHANG C X, et al. Construction of peanut primary core germplasm in Jilin Province by agronomic traits and SSR markers. Journal of Jilin Agricultural University, 2017,39(4):392-402. (in Chinese with English abstract)
doi: 10.13327/j.jjlau.2017.3325
[8]   刘守渠,段运平,撖晓东,等.玉米核心种质群体构建与改良效果.种子,2019,38(3):108-113. DOI:10.16590/j.cnki.1001-4705.2019.03.108
LIU S Q, DUAN Y P, HAN X D, et al. Effect of construction and improvement of maize core germplasm. Seed, 2019,38(3):108-113. (in Chinese)
doi: 10.16590/j.cnki.1001-4705.2019.03.108
[9]   焦禹顺,任福森,郭志伟,等.螺丝椒种质多样性分析及专项核心种质构建.河南农业科学,2018,47(9):105-111. DOI:10.15933/j.cnki.1004-3268.2018.09.017
JIAO Y S, REN F S, GUO Z W, et al. Genetic diversity analysis and special core collection construction of spiral pepper germplasms. Journal of Henan Agricultural Sciences, 2018,47(9):105-111. (in Chinese with English abstract)
doi: 10.15933/j.cnki.1004-3268.2018.09.017
[10]   瞿海鸥,王玉婷,舒雅娟,等.番茄传家宝资源核心种质构建及评价.上海交通大学学报(农业科学版),2015,33(6):1-11. DOI:10.3969/J.ISSN.1671-9964.2015.06.001
QU H O, WANG Y T, SHU Y J, et al. Establishment of the core collection and evaluation for tomato heirloom resources. Journal of Shanghai Jiaotong University (Agricultural Science), 2015,33(6):1-11. (in Chinese with English abstract)
doi: 10.3969/J.ISSN.1671-9964.2015.06.001
[11]   邓学斌,刘磊,闫喆,等.加工番茄核心种质构建及其遗传背景分析.园艺学报,2015,42(7):1299-1312. DOI:10.16420/j.issn.0513-353x.2015-0134
DENG X B, LIU L, YAN Z, et al. Development of a core collection of processing tomato germplasms and analysis of genetic background. Acta Horticulturae Sinica, 2015,42(7):1299-1312. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2015-0134
[12]   CORRADO G, CARAMANTE M, PIFFANELLI P, et al. Genetic diversity in Italian tomato landraces: implications for the development of a core collection. Scientia Horticulturae, 2014,168:138-144. DOI:10.1016/j.scienta.2014.01.027
doi: 10.1016/j.scienta.2014.01.027
[13]   李锡香,杜永臣.番茄种质资源描述规范和数据标准.北京:中国农业出版社,2006.
LI X X, DU Y C. Descriptors and Data Standard for Tomato (Lycopersicon esculentum Mill). Beijing: China Agriculture Press, 2006. (in Chinese)
[14]   芮文婧,王晓敏,张倩男,等.番茄353份种质资源表型性状遗传多样性分析.园艺学报,2018,45(3):561-570. DOI:10.16420/j.issn.0513-353x.2017-0274
RUI W J, WANG X M, ZHANG Q N, et al. Genetic diversity analysis of 353 tomato germplasm resources by phenotypic traits. Acta Horticulturae Sinica, 2018,45(3):561-570. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2017-0274
[15]   钟永达,赵善文,程泽龙,等.基于种苗表型初步构建中国樟树核心种质.江西农业大学学报,2019,41(1):81-89. DOI:10.13836/j.jjau.2019011
ZHONG Y D, ZHAO S W, CHENG Z L, et al. Preliminary construction of core collection of Cinnamomum camphora based on seedling phenotypic data. Acta Agriculturae Universitatis Jiangxiensis, 2019,41(1):81-89. (in Chinese with English abstract)
doi: 10.13836/j.jjau.2019011
[16]   缪黎明,王神云,邹明华,等.园艺作物核心种质构建的研究进展.植物遗传资源学报,2016,17(5):791-800. DOI:10.13430/j.cnki.jpgr.2016.05.001
MIAO L M, WANG S Y, ZOU M H, et al. Review of the studies on core collection for horticultural crops. Journal of Plant Genetic Resources, 2016,17(5):791-800. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.05.001
[17]   郎彬彬,黄春辉,朱博,等.基于果实相关性状的江西野生毛花猕猴桃初级核心种质的构建方法研究.果树学报,2016,33(7):794-803. DOI:10.13925/j.cnki.gsxb.20150451
LANG B B, HUANG C H, ZHU B, et al. Study on the method of constructing a primary core collection of Jiangxi wild Actinidia eriantha based on fruit traits. Journal of Fruit Science, 2016,33(7):794-803. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20150451
[18]   张欢,王东,段帆,等.基于水青树叶表型性状的核心种质资源库构建策略.林业科学研究,2019,32(2):166-173. DOI:10.13275/j.cnki.lykxyj.2019.02.024
ZHANG H, WANG D, DUAN F, et al. Construction strategy of core collection based on leaf phenotypic traits of Tetracentron sinense. Forest Research, 2019,32(2):166-173. (in Chinese with English abstract)
doi: 10.13275/j.cnki.lykxyj.2019.02.024
[19]   郝晓鹏,王燕,田翔,等.基于农艺性状的山西普通菜豆初级核心种质构建.植物遗传资源学报,2016,17(5):815-823. DOI:10.13430/j.cnki.jpgr.2016.05.004
HAO X P, WANG Y, TIAN X, et al. Construction of primary core collection of common bean (Phaseolus vulgaris L.) based on agronomic traits in Shanxi Province. Journal of Plant Genetic Resources, 2016,17(5):815-823. (in Chinese with English abstract)
doi: 10.13430/j.cnki.jpgr.2016.05.004
[20]   何建文,韩世玉.基于SSR标记不同距离聚类与抽样方法构建辣椒核心种质库.西南农业学报,2015,28(5):2199-2204. DOI:10.16213/j.cnki.scjas.2015.05.066
HE J W, HAN S Y. Construction of core capsicum germplasm bank based on different distance clustering and sampling method of SSR marker. Southwest China Journal of Agricultural Sciences, 2015,28(5):2199-2204. (in Chinese with English abstract)
doi: 10.16213/j.cnki.scjas.2015.05.066
[21]   刘玉皎,侯万伟.青海蚕豆种质资源AFLP多样性分析和核心资源构建.甘肃农业大学学报,2011,46(4):62-68. DOI:10.13432/j.cnki.jgsau.2011.04.019
LIU Y J, HOU W W. Diversity analysis on germplasm resource by AFLP and core resources construction of Vicia faba in Qinghai. Journal of Gansu Agricultural University, 2011,46(4):62-68. (in Chinese with English abstract)
doi: 10.13432/j.cnki.jgsau.2011.04.019
[22]   童巧珍,高昱,刘平安,等.基于SRAP标记的湘产百合核心种质库构建.江苏农业科学,2016,44(1):56-60. DOI:10.15889/j.issn.1002-1302.2016.01.014
TONG Q Z, GAO Y, LIU P A, et al. Construction of the core germplasm bank of lily (Lilium brownii) from Hunan based on SRAP marker. Jiangsu Agricultural Sciences, 2016,44(1):56-60. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2016.01.014
[1] Zhongyan ZHANG,Luwei HU,Jiawei CHEN,Zhujun ZHU,Biao ZHU. Agronomic character identification and ornamental value evaluation of dwarf ornamental tomato germplasm resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 158-170.
[2] Yanfeng DENG,Shuiping XIAO,Shaoqun YANG,Xinwen LIU,Xingsheng KE,Tao WANG,Xiu YANG. Identification of main agronomic characteristics and screening of elite germplasm resources of the cotton after rape cultivation in the Yangzte River Basin[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 551-561.
[3] Ying LIANG,Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG. Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 151-160.
[4] TIAN Ping, LI Jianshe, GAO Yanming. Effects of brackish water irrigation on tomato yield and fruit sucrose metabolism in sunlight greenhouse[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 667-677.
[5] CHEN Shanshan, ZHOU Yekai, ZHANG Zhiming, ZHANG Min, WANG Qiaomei. Effects of carbon dioxide enrichment on fruit development and quality of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 318-326.
[6] TAO Xiaoya, LI Jiayin, MAO Linchun. Effect of abscisic acid on wound-healing process in postharvest tomato fruit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 321-326.
[7] BO Xiaoyan, MI Wenbao, XU Hao, DONG Jun. Estimating of ecological service value for different wetland types based on multi-source data fusion in Ningxia Plain.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 228-244.
[8] BO Xiaoyan, MI Wenbao, XU Hao, ZHANG Xueyi, MI Nan, SONG Yongyong. Contents and ecological stoichiometry characteristics of soil carbon, nitrogen and phosphorus in wetlands of Ningxia plain[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 107-118.
[9] Song Naiping, Wu Xudong, Pan Jun, Qu Wenjie, Zhou Juan, An Chaoping. Impacts of artificial Caragana intermedia stand on soil texture evolution in desert steppe.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(6): 703-711.
[10] Liang Xifeng, Cai Yangyang, Wang Yongwei. Experiment on physical and mechanical properties of tomato seedling pot for automatic vegetable transplanter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 616-622.
[11] Zhang Jiao, Li Yuecheng, Zhang Dazhi. Species diversity of soil animals at different desert habitats in Baijitan region of Ningxia and its relationship with environmental factors[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 428-438.
[12] Wang Yan, Pan Changtian, Wang Jie, Qin Li, Zou Tao, Lu Gang. Effects of gibberellin on tomato stigma exsertion and hormonerelated gene expression under moderate heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 449-457.
[13] Zhang Zhi, Hu Xiaohui, Zou Zhirong* . Prediction of grey mould disease from greenhouse tomato based on radical basis function neural network.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 197-202.
[14] WANG Junjun1, WU Xiaocheng2, DING Wenya1, ZHOU Yuanqing1, LIN Xianyong1*. Effects of nitrogen and potassium supply on fruit yield and nutritional quality of aeroponically grown tomato cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 489-496.
[15] ZHOU Guo-Zhi, LI Zhi-Miao, YANG Yue-Jian, XING Juan, WANG Rong-Qing. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 390-394.