Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 74-88    DOI: 10.3785/j.issn.1008-9209.2020.04.081
Resource utilization & environmental protection     
Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils
Wenxian ZOU1(),Yuning ZHOU1,Siting GU1,Tuhai HUANG1,Yuyou ZHI1,Long MENG1,Jiachun SHI1(),Jian CHEN2,Jianming XU1
1.Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Bureau of Agriculture & Rural and Water Resource of Wenling, Taizhou 317500, Zhejiang, China
Download: HTML   HTML (   PDF(1718KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A pot experiment was conducted in two paddy soils [paddy field on desalting clayey polder soil (PC) and diluvial gritty loaming paddy soil (DP)] to explore the effects of critical stage moisture managements on cadmium (Cd) accumulation and translocation in rice with five water managements. The water managements were moisture throughout growth (CK), continuous flooding (YS), flooding at tillering-jointing stage (FB), flooding at heading stage (CS) and flooding at filling-maturing stage (GC). The results showed that, in tillering stage, the contents of soil exchangeable Cd were CK≈CS≈GC?FB≈YS, and in other rice growth stages, which were CK≈FB≈CS≈GC?YS. In PC, Cd contents in grain were FB>GC≈CK>CS>YS, and Cd content in grain of CS treatment decreased by 49.99% as compared with the CK. In DP, Cd contents in grain were CK≈GC>CS≈FB>YS, and Cd contents in grain of FB and CS treatments decreased by 50.52% and 44.85%, respectively, when compared with the CK. In PC, when compared with the CK treatment, CS treatment decreased the Cd translocation factor from stem to grain (TF2), but FB treatment increased it. In DP, both FB and CS treatments reduced TF2, when compared with the CK. There was a positive correlation between Cd content in grain and Cd content on root surface, and FB and CS treatments decreased the Cd contents on root surface in both paddy soils. FB treatment significantly increased the dithion-citrate-bicarbonate (DCB)-Fe content compared with other treatments in both paddy soils. The Cd content in grain had significant (P<0.05) and highly significant (P<0.01) negative correlation relationships with DCB-Fe and DCB-Mn in DP, but the relationship was not observed in PC. In summary, flooding measures in different stages influence the Cd content in grain by affecting the Cd translocation from stem to grain and affecting Cd content on root surface. Heading stage is the critical flooding stage in PC. In DP, tillering-jointing and heading stages are the critical flooding stages. The iron plaque has different effects on grain Cd accumulation and translocation in different paddy soils, which resulting in different critical flooding stages in two paddy soils.



Key wordssoil available cadmium      critical stage flooding      rice      translocation factor      iron plaque on the root surface      cadmium accumulation     
Received: 08 April 2020      Published: 09 March 2021
CLC:  X  
Corresponding Authors: Jiachun SHI     E-mail: 21714107@zju.edu.cn;jcshi@zju.edu.cn
Cite this article:

Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.04.081     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/74


关键时期淹水对不同土壤上水稻镉累积和转运的影响

采用水稻盆栽试验,设置全生育期湿润(CK)、全生育期淹水(YS)、分蘖-拔节期淹水(FB)、抽穗期淹水(CS)和灌浆-成熟期淹水(GC)5个处理,探索水稻关键生长时期的淹水模式对2种土壤(淡涂黏田和洪积泥砂田)上水稻镉(Cd)累积转运的影响。结果表明:水稻分蘖期2种土壤的可交换态Cd含量呈现CK≈CS≈GC?FB≈YS,而在水稻的其他生长时期呈现CK≈FB≈CS≈GC?YS。在淡涂黏田中,水稻籽粒Cd含量呈现FB>GC≈CK>CS>YS,CS比CK处理下降49.99%;而洪积泥砂田中籽粒Cd含量为CK≈GC>CS≈FB>YS,FB和CS处理分别比CK处理下降50.52%和44.85%。在淡涂黏田中,与CK处理相比,CS处理明显降低了茎向籽粒Cd的转运能力而FB处理增加了其转运能力;在洪积泥砂田中,与CK处理相比,FB和CS处理均明显降低了茎向籽粒Cd的转运能力。在这2种土壤中,水稻籽粒Cd与根表Cd含量均呈正相关关系;FB和CS处理均能降低根表Cd含量;且FB处理根表铁膜[主要成分是连二亚硫酸钠-柠檬酸盐-碳酸氢盐-铁(dithion-citrate-bicarbonate-Fe, DCB-Fe),其次是根表氧化锰DCB-Mn]含量均明显高于其他处理。其中,洪积泥砂田水稻根表DCB-Fe、DCB-Mn与籽粒Cd含量分别呈显著(P<0.05)和极显著(P<0.01)负相关,但在淡涂黏田上不存在任何相关性。综上所述,水稻关键时期淹水处理通过影响根表Cd含量和Cd从茎向籽粒的转运能力来影响水稻籽粒Cd的累积。抽穗期是淡涂黏田水稻降Cd的关键淹水时期,而在洪积泥砂田中是分蘖-拔节期和抽穗期。不同土壤中水稻铁膜对籽粒Cd积累的影响不同,导致2种土壤的关键淹水时期有所差异。


关键词: 土壤有效镉,  关键时期淹水,  水稻,  转运系数,  根表铁膜,  镉积累 

土壤

Soil

pH

质地

Texture

w(全镉)

Total Cd

content/

(mg/kg)

w(有效镉)

Available Cd

content/

(mg/kg)

w(全铁)

Total Fe

content/

(mg/kg)

w(全锰)

Total Mn

content/

(mg/kg)

w(全硫)

Total S

content/

(g/kg)

w(有机质)

Organic

matter

content/(g/kg)

w(全氮)

Total N

content/

(g/kg)

淡涂黏田 PC5.8中壤土1.100.6119 169.21133.990.7741.022.69
洪积泥砂田 DP5.1砂壤土0.910.7118 544.94258.490.3237.732.52
Table 1 Physical and chemical properties and metal contents of the experimental soils

水分管理方式

Water management

操作方法

Operational method

全生育期湿润

Moisture throughout growth (CK)

整个生育期保持土壤水分约为田间持水量的60%(苗期浅水灌溉)

全生育期淹水

Continuous flooding (YS)

整个生育期保持表土以上4~5 cm水层(苗期浅水灌溉)

分蘖-拔节期淹水

Flooding at tillering-jointing stage (FB)

分蘖-拔节期保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)

抽穗期淹水

Flooding at heading stage (CS)

抽穗期保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)

灌浆-成熟期淹水

Flooding at filling-maturing stage (GC)

灌浆-成熟期淹水保持表土以上4~5 cm水层,其他时期保持约为田间持水量的60%(苗期浅水灌溉)
Table 2 Conditional controlling in different water managements
Fig. 1 Dynamic changes of Eh values in two paddy soils with different water managementsA. Paddy field on desalting clayey polder soil; B. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. The green area represents the time of flooding at seedling stage (the 1st-25th d); the yellow area represents the time of flooding at tillering and jointing stages (the 26th-80th d); the blue area represents the time of flooding at heading stage (the 81st-95th d); and the white area represents the time of flooding at filling and maturing stages (the 96th-150th d).
Fig. 2 Dynamic changes of pH in two paddy soils with different water managementsA. Paddy field on desalting clayey polder soil; B. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. The green area represents the time of flooding at seedling stage (the 1st-25th d); the yellow area represents the time of flooding at tillering and jointing stages (the 26th-80th d); the blue area represents the time of flooding at heading stage (the 81st-95th d); and the white area represents the time of flooding at filling and maturing stages (the 96th-150th d).
Fig. 3 Dynamic changes of Cd speciation proportion in two paddy soils with different water managementsA. Paddy field on desalting clayey polder soil; B. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. F1: Exchangeable Cd; F2: Specifically adsorbed Cd including carbonate form; F3: Amorphous Fe-Mn oxide-bound Cd; F4: Organic matter adsorbed/sulfide-bound Cd; F5: Residual Cd.
Fig. 4 Dynamic changes of DGT-Fe, DGT-Mn, DGT-P and DGT-S contents in two paddy soils with different water managementsA1-A4. Paddy field on desalting clayey polder soil; B1-B4. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. Different lowercase letters above bars represent significant differences among different treatments at the same stage at the 0.05 probability level; n=3.

生育期

Growth

period

部位

Part

参量

Parameter

淡涂黏田 PC洪积泥砂田 DP

籽粒Cd

Cd in grain

根表Cd2+

Cd2+ on root surface

可交换态Cd

Exchangeable Cd

籽粒Cd Cd in grain

根表Cd2+

Cd2+ on root surface

可交换态Cd

Exchangeable Cd

成熟期

Maturing stage

根表

Root

surface

Cd0.706*0.979**0.886**0.4210.992**0.767**
DCB-Fe0.021-0.277-0.097-0.718*0.088-0.228
DCB-Mn0.0580.0930.209-0.804**0.162-0.118
Cd2+0.6150.903**0.3360.740*
Fe2+-0.463-0.631-0.754*-0.407-0.697*-0.696*
Mn2+0.2990.667*0.626-0.262-0.742*-0.740*

全生育期

Whole growth stage

根表

Root

surface

Cd2+0.546**0.249
Fe2+-0.435**-0.427**-0.255-0.478**
Mn2+-0.049-0.207-0.432**-0.599**
土壤SoilDGT-Fe-0.752**-0.703**-0.220-0.724**
DGT-Mn-0.619**-0.467**-0.245-0.675**
DGT-S-0.648**-0.565**-0.162-0.531**
DGT-P-0.504**-0.336*-0.047-0.685**
Table 3 Correlation relationships among the elements of soil, rice root surface and grain in different rice growth stages
Fig. 5 Dynamic changes of DCB-Fe contents on root surface in two paddy soils with different water managementsA. Paddy field on desalting clayey polder soil; B. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. Different lowercase letters above bars represent significant differences among different treatments at the same stage at the 0.05 probability level; n=3.
Fig. 6 Dynamic changes of Cd contents on root surface in two paddy soils with different water managementsA. Paddy field on desalting clayey polder soil; B. Diluvial gritty loamy paddy soil. Please see the Table 2 for the details of each treatment symbol. Different lowercase letters above bars represent significant differences among different treatments at the same stage at the 0.05 probability level; n=3.
Fig. 7 Cd contents in rice grain, root, stem and leaf in two paddy soils with different water managementsPlease see the Table 2 for the details of each treatment symbol. PC: Paddy field on desalting clayey polder soil; DP: Diluvial gritty loamy paddy soil. Different lowercase letters above bars represent significant differences among different treatments at the same stage at the 0.05 probability level; n=3.

处理

Treatment

淡涂黏田 PC洪积泥砂田 DP
TF1TF2TF3TF1TF2TF3
CK0.29±0.08ab0.11±0.03bc0.26±0.04b0.53±0.06a0.10±0.03b0.38±0.13ab
YS0.22±0.12b0.19±0.07ab0.25±0.11b0.29±0.23b0.20±0.09a0.26±0.10ab
FB0.20±0.03b0.20±0.04a2.75±1.55a0.38±0.05ab0.05±0.02b0.51±0.30a
CS0.27±0.01ab0.07±0.03c0.15±0.02b0.36±0.07ab0.05±0.02b0.17±0.07b
GC0.39±0.11a0.17±0.02ab0.31±0.04b0.34±0.05ab0.11±0.04ab0.27±0.07ab
Table 4 Cd translocation factors with different water managements in rice
[1]   CHOPPALA G, SAIFULLAH, BOLAN N, et al. Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Critical Reviews in Plant Sciences, 2014,33(5):374-391. DOI:10.1080/07352689.2014.903747
doi: 10.1080/07352689.2014.903747
[2]   CHEN X, CHEN X, WANG Y J, et al. A nomogram for predicting the renal dysfunction in a Chinese population with reduction in cadmium exposure based on an 8 years follow up study. Ecotoxicology and Environmental Safety, 2020,191:110251. DOI:10.1016/j.ecoenv.2020.110251
doi: 10.1016/j.ecoenv.2020.110251
[3]   SATARUG S, GARRETT S H, SENS M A, et al. Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 2010,18(2):182-190. DOI:10.1289/ehp.0901234
doi: 10.1289/ehp.0901234
[4]   YUAN L P. Development of hybrid rice to ensure food security. Rice Science, 2014,21(1):1-2. DOI:10.1016/S1672-6308(13)60167-5
doi: 10.1016/S1672-6308(13)60167-5
[5]   SUI F Q, CHANG J D, TANG Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant and Soil, 2018,433(1):377-389. DOI:10.1007/s11104-018-3849-5
doi: 10.1007/s11104-018-3849-5
[6]   YAN H L, XU W X, XIE J Y, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nature Communications, 2019,10(1):1-12. DOI:10.1038/s41467-019-10544-y
doi: 10.1038/s41467-019-10544-y
[7]   环境保护部,国土资源部.全国土壤污染状况调查公报,2014. 140417558995804588.pdf
Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Report on the National Soil Con-tamination Survey, 2014. (in Chinese)
[8]   GONG Y, ZHAO D Y, WANG Q L, et al. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade. Water Research, 2018,147:440-460. DOI:10.1016/j.watres.2018.10.024
doi: 10.1016/j.watres.2018.10.024
[9]   LI J R, XU Y M. Use of clay to remediate cadmium contaminated soil under different water management regimes. Ecotoxicology and Environmental Safety, 2017,141:107-112. DOI:10.1016/j.ecoenv.2017.03.021
doi: 10.1016/j.ecoenv.2017.03.021
[10]   LI J R, XU Y M. Evaluation of palygorskite for remediation of Cd-polluted soil with different water conditions. Journal of Soils and Sediments, 2018,18(2):526-533. DOI:10.1007/s11368-017-1771-8
doi: 10.1007/s11368-017-1771-8
[11]   YE X X, LI H, ZHANG L. Amendment damages the function of continuous flooding in decreasing Cd and Pb uptake by rice in acid paddy soil. Ecotoxicology and Environmental Safety, 2018,147:708-714. DOI:10.1016/j.ecoenv.2017.09.034
doi: 10.1016/j.ecoenv.2017.09.034
[12]   苏雨婷,赵英杰,谷子寒,等.灌溉方式对土壤有效镉含量与双季稻产量形成及镉累积分配的影响.作物研究,2018,32(3):180-187. DOI:10.16848/j.cnki.issn.1001-5280.2018.03.02
SU Y T, ZHAO Y J, GU Z H, et al. Effect of irrigation mode on soil available Cd content and yield formation and Cd accumulation and distribution of double-cropping rice. Crop Research, 2018,32(3):180-187. (in Chinese with English abstract)
doi: 10.16848/j.cnki.issn.1001-5280.2018.03.02
[13]   KHAN N, SESHADRI B, BOLAN N, et al. Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in Agronomy, 2016,139:1-96. DOI:10.1016/bs.agron.2016.04.002
doi: 10.1016/bs.agron.2016.04.002
[14]   HANSEL C M, FENDORF S, SUTTON S, et al. Characterization of Fe plaque and associated metals on the roots of mine-waste impacted aquatic plants. Environmental Science and Technology, 2001,35(19):3863-3868. DOI:10.1021/es0105459
doi: 10.1021/es0105459
[15]   LIU H, ZHANG J, CHRISTIE P, et al. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil. Science of the Total Environment, 2008,394(2):361-368. DOI:10.1016/j.scitotenv.2008.02.004
doi: 10.1016/j.scitotenv.2008.02.004
[16]   LI H B, ZHENG X W, TAO L X, et al. Aeration increases cadmium (Cd) retention by enhancing iron plaque formation and regulating pectin synthesis in the roots of rice (Oryza sativa) seedlings. Rice, 2019,12(1):1-14. DOI:10.1186/s12284-019-0291-0
doi: 10.1186/s12284-019-0291-0
[17]   WANG J J, DONG Q L, LU Q, et al. Effect of water-driven changes in rice rhizosphere on Cd lability in three soils with different pH. Journal of Environmental Sciences, 2020,87:82-92. DOI:10.1016/j.jes.2019.05.020
doi: 10.1016/j.jes.2019.05.020
[18]   LI J R, XU Y M. Immobilization remediation of Cd-polluted soil with different water condition. Journal of Environmental Management, 2017,193:607-612. DOI:10.1016/j.jenvman.2017.02.064
doi: 10.1016/j.jenvman.2017.02.064
[19]   鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000.
LU R K. Soil Argrochemistry Analysis Protocols. Beijing: China Agriculture Science Press, 2000. (in Chinese)
[20]   WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro) oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems. Environmental Science and Technology, 2019,53(5):2500-2508. DOI:10.1021/acs.est.8b06863
doi: 10.1021/acs.est.8b06863
[21]   刘桃菊,唐建军,胡岳峰,等.水稻根系建成对高产形成的模拟模型与调控决策研究:水稻根系生理参数与产量形成关系及其模拟模型研究.江西农业大学学报,1999,21(1):1-5.
LIU T J, TANG J J, HU Y F, et al. A study on simulation model and regulation of rice root growth affecting high yield formation: a study on the relationship between the physiological character parameters of root and yield formation in rice and the regulation model of rice growth. Acta Agriculturae Universitis Jiangxiensis, 1999,21(1):1-5. (in Chinese with English abstract)
[22]   凌启鸿,陆卫平,蔡建中.水稻不同类型品种叶龄进程根系活力的研究.江苏农学院学报,1987,8(3):25-28.
LING Q H, LU W P, CAI J Z. Study on root activity with leaf-age-progress in different rice varieties. Journal of Jiangsu Agricultural College, 1987,8(3):25-28. (in Chinese with English abstract)
[23]   CATTANI I, ROMANI M, BOCCELLI R. Effect of cultivation practices on cadmium concentration in rice grain. Agronomy for Sustainable Development, 2008,28(2):265-271. DOI:10.1051/agro:2007033
doi: 10.1051/agro:2007033
[24]   BHATTACHARYYA P, DAS S, ADHYA T K, et al. Root exudates of rice cultivars affect rhizospheric phosphorus dynamics in soils with different phosphorus statuses. Communications in Soil Science and Plant Analysis, 2013,44(10):1643-1658. DOI:10.1080/00103624.2013.769562
doi: 10.1080/00103624.2013.769562
[25]   AULAKH M S, WASSMANN R, BUENO C, et al. Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biology, 2001,3(2):139-148. DOI:10.1055/s-2001-15205
doi: 10.1055/s-2001-15205
[26]   HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology, 2016,50(8):4178-4185. DOI:10.1021/acs.est.5b05424
doi: 10.1021/acs.est.5b05424
[27]   PAN Y Y, KOOPMANS G F, BONTEN L T C, et al. Temporal variability in trace metal solubility in a paddy soil not re?ected in uptake by rice. Environmental Geochemistry and Health, 2016,38(6):1355-1372. DOI:10.1007/s10653-016-9803-7
doi: 10.1007/s10653-016-9803-7
[28]   TIAN T, ZHOU H, GU J F, et al. Cadmium accumulation and bioavailability in paddy soil under different water regimes for different growth stages of rice (Oryza sativa L.). Plant and Soil, 2019,440(1):327-339. DOI:10.1007/s11104-019-04094-x
doi: 10.1007/s11104-019-04094-x
[29]   范云涛,雷廷武,蔡强.湿润速度和累积降雨对土壤表面结皮发育的影响.土壤学报,2009,46(5):764-771.
FAN Y T, LEI T W, CAI Q. Effects of wetting rate and cumulative rainfall on crust formation. Acta Pedologica Sinica, 2009,46(5):764-771. (in Chinese with English abstract)
[30]   LI S S, WANG M, ZHAO Z Q, et al. Use of soil amendments to reduce cadmium accumulation in rice by changing Cd distribution in soil aggregates. Environmental Science and Pollution Research, 2019,26(20):20929-20938. DOI:10.1007/s11356-019-05431-4
doi: 10.1007/s11356-019-05431-4
[31]   姚贤良,于德芬.关于集约农作制下的土壤结构问题:Ⅲ.不同培育条件下土壤结构的微形态特征.土壤学报,1988,25(1):55-58.
YAO X L, YU D F. On the soil structure under intensive farming system: Ⅲ. Micromorphological characteristics of soil structure under different conditions of incubation. Acta Pedologica Sinica, 1988,25(1):55-58. (in Chinese with English abstract)
[32]   李浩宏,王占礼,申楠,等.土壤结皮研究进展.人民黄河,2015,37(10):92-98. DOI:10.3969/j.issn.1000-1379.2015.10.024
LI H H, WANG Z L, SHEN N, et al. Research progress of soil crust. Yellow River, 2015,37(10):92-98. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-1379.2015.10.024
[33]   张学.灌溉与农田的板结问题.灌溉排水,1984,3(1):14-20.
ZHANG X. Irrigation and farmland consolidation. Guangai Paishui, 1984,3(1):14-20. (in Chinese)
[34]   高鹏,李增嘉,杨慧玲,等.渗灌与漫灌条件下果园土壤物理性质异质性及其分形特征.水土保持学报,2008,22(2):155-158. DOI:10.13870/j.cnki.stbcxb.2008.02.039
GAO P, LI Z J, YANG H L, et al. Physical property heterogeneity and factal characteristics of soil particle in orchard under subsurface irrigation and flood irrigation. Journal of Soil and Water Conservation, 2008,22(2):155-158. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2008.02.039
[35]   李财,任明漪,石丹,等.薄膜扩散梯度(DGT):技术进展及展望.农业环境科学学报,2018,37(12):2613-2628. DOI:10.11654/jaes.2018-1403
LI C, REN M Y, SHI D, et al. Diffusive gradient in thin films (DGT): technological progress and prospects. Journal of Agro-Environment Science, 2018,37(12):2613-2628. (in Chinese with English abstract)
doi: 10.11654/jaes.2018-1403
[36]   ZHANG H, SHAO J G, ZHANG S H, et al. Effect of phosphorus-modified biochars on immobilization of Cu(Ⅱ), Cd(Ⅱ), and As(Ⅴ) in paddy soil. Journal of Hazardous Materials, 2019:121349. DOI:10.1016/j.jhazmat.2019.121349
doi: 10.1016/j.jhazmat.2019.121349
[37]   SESHADRI B, BOLAN N S, WIJESEKARA H, et al. Phosphorus-cadmium interactions in paddy soils. Geoderma, 2016,270:43-59. DOI:10.1016/j.geoderma.2015.11.029
doi: 10.1016/j.geoderma.2015.11.029
[38]   BEATE F, VOEGELIN A, KRETZSCHMAR R, et al. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper. Environmental Science and Technology, 2013,47(22):12775-12783. DOI:10.1021/es401997d
doi: 10.1021/es401997d
[39]   TAYLOR G J, CROWDER A A. Use of the DCB technique for extraction of hydrous iron oxides from roots of wetland plants. American Journal of Botany, 1983,70(8):1254-1257.
[40]   WANG X, YAO H X, WONG M H, et al. Dynamic changes in radial oxygen loss and iron plaque formation and their effects on Cd and As accumulation in rice (Oryza sativa L.). Environmental Geochemistry and Health, 2013,35(6):779-788. DOI:10.1007/s10653-013-9534-y
doi: 10.1007/s10653-013-9534-y
[41]   HUANG G X, DING C F, HU Z Y, et al. Topdressing iron fertilizer coupled with pre-immobilization in acidic paddy fields reduced cadmium uptake by rice (Oryza sativa L.). Science of the Total Environment, 2018,636:1040-1047. DOI:10.1016/j.scitotenv.2018.04.369
doi: 10.1016/j.scitotenv.2018.04.369
[42]   胡莹,黄益宗,黄艳超,等.不同生育期水稻根表铁膜的形成及其对水稻吸收和转运Cd的影响.农业环境科学学报,2013,32(3):432-437. DOI:10.11654/jaes.2013.03.004
HU Y, HUANG Y Z, HUANG Y C, et al. Formation of iron plaque on root surface and its effect on Cd uptake and translocation by rice (Oryza sativa L.) at different growth stages. Journal of Agro-Environment Science, 2013,32(3):432-437. (in Chinese with English abstract)
doi: 10.11654/jaes.2013.03.004
[43]   SYU C H, WU P R, LEE C H, et al. Arsenic phytotoxicity and accumulation in rice seedlings grown in arsenic contaminated soils as influenced by the characteristics of organic matter amendments and soils. Journal of Plant Nutrition and Soil Science, 2019,182(1):60-71. DOI:10.1002/jpln.201800337
doi: 10.1002/jpln.201800337
[44]   FAN J L, XIA X, HU Z Y, et al. Excessive sulfur supply reduces arsenic accumulation in brown rice. Plant Soil and Environment, 2013,59(4):169-174. DOI:10.17221/882/2012-
PSE
doi: 10.17221/882/2012-
[45]   DING Y, WANG Z G, REN M L, et al. Iron and callose homeostatic regulation in rice roots under low phosphorus. BMC Plant Biology, 2018,18(1):326. DOI:10.1186/s12870-018-1486-z
doi: 10.1186/s12870-018-1486-z
[46]   汤克丽,蔡惠玲,罗乘露,等.商陆根表铁锰氧化胶膜形成的影响因素研究.福建师范大学学报(自然科学版),2015,31(2):76-82.
TANG K L, CAI H L, LUO C L, et al. Effects of the culture conditions on the formation of iron and manganese plaques on Phytolacca acinosa Roxb. root surface. Journal of Fujian Normal University (Natural Science Edition), 2015,31(2):76-82. (in Chinese with English abstract)
[47]   LI J R, XU Y M. Immobilization of Cd in paddy soil using moisture management and amendment. Environmental Science and Pollution Research, 2015,22(7):5580-5586. DOI:10.1007/s11356-014-3788-5
doi: 10.1007/s11356-014-3788-5
[48]   刘昭兵,纪雄辉,官迪,等.镉胁迫条件下淹水时间对水稻吸收累积镉的影响.生态与农村环境学报,2017,33(12):1125-1131. DOI:10.11934/j.issn.1673-4831.2017.12.009
LIU Z B, JI X H, GUAN D, et al. Effects of timing and duration of waterlogging on Cd absorption and accumulation by rice under cadmium stress. Journal of Ecology and Rural Environment, 2017,33(12):1125-1131. (in Chinese with English abstract)
doi: 10.11934/j.issn.1673-4831.2017.12.009
[49]   ARAO T, KAWASAKI A, BABA K, et al. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science and Technology, 2009,43(24):9361-9367. DOI:10.1021/es9022738
doi: 10.1021/es9022738
[50]   LIU H J, ZHANG J L, CHRISTIE P, et al. Influence of iron fertilization on cadmium uptake by rice seedlings irrigated with cadmium solution. Communications in Soil Science and Plant Analysis, 2010,41(5):584-594. DOI:10.1080/00103620903531169
doi: 10.1080/00103620903531169
[51]   CHEN H P, WANG P, GU Y, et al. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling. Environmental Pollution, 2020,261:114151. DOI:10.1016/j.envpol.2020.114151
doi: 10.1016/j.envpol.2020.114151
[52]   熊丽萍,谢运河,黄伯军,等.水稻干物质与镉积累的动态效应.湖南农业科学,2017,12:43-46. DOI:10.16498/j.cnki.hnnykx.2017.012.007
XIONG L P, XIE Y H, HUANG B J, et al. Dynamic? characteristic of the dry?matter accumulation and Cd? absorption in rice. Hunan Agricultural Sciences, 2017,12:43-46. (in Chinese with English abstract)
doi: 10.16498/j.cnki.hnnykx.2017.012.007
[1] Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.
[2] Xinxia WANG,Jifeng WANG,Qiong HOU,Xiaojun WANG,Wuzhong NI. Effects of different fertilizing models on growth of single crop rice and nitrogen and phosphorus runoff losses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 225-233.
[3] Dongdong CAO,Wei WU,Shanyu CHEN,Yebo QIN,Guanhai RUAN,Min LU,Peili QIAN,Yutao HUANG. Seed vigor testing by low temperature germination in early rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 657-666.
[4] Fuyin HOU,Yingjiang CHEN,Zhiqing YANG,Chongfu JIN,Kai SHI,Changkuan CHEN,Gongneng FENG,Hongshan LI. Effects of digested pig slurry application on agronomic trait, yield and forage quality of indica rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 325-331.
[5] Ang WANG,Danchao DAI,Xuzhou MA,Qun MOU,Yongqing YU,Weiqun Lü. Effects of rice-crab culture on nitrogen leaching in rice fields in the north of China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 332-342.
[6] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[7] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.
[8] . Rice cropping information extraction mapping based on sample knowledge mining using high resolution remote sensing images[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 765-774.
[9] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, ZHANG Xin, HUANG Yuqing, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider . Effects of zinc and silicon on cadmium toxicity and mineral element translocation in two rice (Oryza sativa) genotypes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 294-310.
[10] ZHANG Zhichang, PAN Weihuai, YAN Xu, YIN Shoupeng, CHENG Zhukuan, PAN Jianwei. Screening and phenotypic identification of auxin-resistant root system mutants in rice (Oryza sativa L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 311-317.
[11] PU Shilin, DENG Fei, HU Hui, ZHONG Xiaoyuan, WANG Li, LI Wu, LI Shuxian, LIAO Shuang, REN Wanjun. Effects of different hill spacings and seedling numbers per hill on dry matter production and yield of machine-transplanting hybrid rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 21-30.
[12] WANG Yongwei, HE Zhuoliang, CHEN Jun, WANG Jun, ZHANG Lingyue, TANG Yanhai. Optimization on structure and parameters of a collision-pneumatic hybrid rice pollination machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(1): 98-106.
[13] WANG Yihang, ZHAO Luyao, WANG Guoming, ZHU Aiyi. Physiological responses in Neolitsea sericea seedlings to drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 543-551.
[14] HU Chunqin, LI Rui, HONG Chunlai, CAO Wenting, LIU Jiawei, ZHOU Jun, WENG Huanxin. Enhancement effects of seaweed iodine fertilizer application on the iodine contents of rice, vegetables and fruits in the field[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 552-560.
[15] DAI Zou, YU Huaqing, GUO Changchun, MA Jun, LI Na, YANG Zhiyuan, XU Hui, SUN Yongjian. Effects of Na2SeO3 and Na2SiO3 on Cd uptake and accumulation in two different rice (Oryza Sativa L.) cultivars at jointing stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 441-450.