Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2024, Vol. 50 Issue (1): 109-122    DOI: 10.3785/j.issn.1008-9209.2023.02.131
Resource Utilization & Environmental Protection     
Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients
Tong QI(),Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU()
Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(1533KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Non-flooding plastic film mulching cultivation (PM) for rice is a comprehensive and innovative technology that utilizes plastic film covering as the core to achieve water-saving rice production. However, after mulching with plastic film, nitrogen (N) fertilizer can only be applied once as a basal fertilizer before transplanting, which will lead to excessive vegetative growth at the early stage and potential N deficiency at the late growth stage, thereby limiting the high yield of rice. Polymer coated urea (CR) is a controlled release N fertilizer that has become one of the best management measures for improving crop yield and N use efficiency under a traditional flooding cultivation (TF) pattern, but it has not been evaluated in a long-term positioning test under the PM pattern. In this study, taking the high-yielding and medium-maturing indica hybrid rice cultivar ‘Liangyoupeijiu’ as a test material, the effects of applying CR and urea (UR) on rice yield, N use efficiency and soil nutrient contents were compared under the PM and TF patterns. The results showed that, compared with applying UR, applying CR under the TF and PM patterns improved the N use efficiency by 9.2% and 15.4%, respectively (P<0.05), and increased the rice yield by 8.6% and 15.0%, respectively (P<0.05). Compared with the TF pattern, the PM pattern accelerated the decomposition of soil organic matter and reduced the contents of total N and alkali-hydrolyzable N in the soil. Compared with applying UR, applying CR under the PM pattern alleviated the decrease of the total N and alkali-hydrolyzable N contents in the soil and increased the economic benefits by 16.8%. In summary, applying CR is an effective way to solve the problem of N deficiency at the late growth stage of rice under the PM pattern.



Key wordsrice      non-flooding plastic film mulching cultivation      controlled release nitrogen fertilizer      nitrogen use efficiency      economic benefits      crop yield      soil nutrients     
Received: 13 February 2023      Published: 01 March 2024
CLC:  S36  
Corresponding Authors: Lianghuan WU     E-mail: 22014120@zju.edu.cn;finm@zju.edu.cn
Cite this article:

Tong QI,Sheng TANG,Jingjie ZHOU,Qingxu MA,Lianghuan WU. Effects of long-term non-flooding plastic film mulching and application of coated urea on rice yield, nitrogen use efficiency and soil nutrients. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 109-122.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.02.131     OR     https://www.zjujournals.com/agr/Y2024/V50/I1/109


长期覆膜旱作和施用包膜尿素对水稻产量、氮肥利用率及土壤养分的影响

水稻覆膜旱作栽培(non-flooding plastic film mulching cultivation, PM)是以地膜覆盖为核心来实现水稻节水生产的综合集成创新技术。然而,在覆盖地膜后,氮肥只能在移栽前作为基肥一次性施用,导致水稻前期营养生长过盛和生育后期潜在缺氮,从而限制了水稻高产。聚合物包膜尿素(polymer coated urea, CR)是一种控释氮肥,在传统淹水栽培(traditional flooding cultivation, TF)模式下已成为提高作物产量和氮肥利用率的最佳管理措施之一,但尚未在PM模式下进行长期定位试验评估。本研究以高产中熟籼型杂交稻‘两优培九’为供试水稻品种,比较在PM和TF 2种栽培模式下施用CR和普通尿素(urea, UR)对水稻产量、氮肥利用率及土壤养分含量的影响。结果表明:与UR相比,在TF和PM模式下施用CR使水稻氮肥利用率分别提高9.2%和15.4%(P<0.05),使水稻产量分别提高8.6%和15.0%(P<0.05)。与TF模式相比,PM模式加速了土壤有机质的分解,降低了土壤全氮、碱解氮含量。与施用UR相比,在PM模式下施用CR能缓解土壤全氮、碱解氮含量的下降,并使经济效益提高16.8%。综上所述,施用CR是解决在PM模式下水稻生育后期缺氮问题的有效途径。


关键词: 水稻,  覆膜旱作栽培,  控释氮肥,  氮肥利用率,  经济效益,  作物产量,  土壤养分 

处理

Treatment

植株吸氮量

Plant N

uptake amount

氮肥利用率

N use

efficiency

水稻产量

Grain yield

有效穗数

Effective

panicle number

每穗粒数

Grains per

panicle

结实率

Grain filling

rate

栽培模式

Cultivation pattern (C)

******NS**NS

氮肥类型

N fertilizer type (N)

******************
C×N***************

年份

Year (Y)

******************
C×Y**********NSNS
N×Y*****************
C×N×Y**NS*****NSNS

处理

Treatment

千粒质量

1 000-grain

mass

有机质含量

Organic matter

content

全氮含量

Tota N

content

碱解氮含量

Alkali-hydrolyzable

N content

有效磷含量

Available P

content

速效钾含量

Available K

content

pH值

pH

value

栽培模式

Cultivation pattern (C)

*******************

氮肥类型

N fertilizer type (N)

********************
C×N**NSNSNSNSNSNS

年份

Year (Y)

******************NS
C×Y*NSNSNS*******
N×Y***NSNSNS******NS
C×N×YNSNSNSNSNSNSNS
Table 1 Analysis of variance on grain yield and its components, plant N uptake amount, N use efficiency, soil nutrient content with cultivation pattern, N fertilizer type, year, and their interaction

年份

Year

氮肥类型

N fertilizer

type

水稻产量

Grain yield/(t/hm2)

植株吸氮量

Plant N uptake amount/(kg/hm2)

有效穗数

Effective panicle number/(104 hm-2)

TFPM

差异

Difference

TFPM

差异

Difference

TFPM

差异

Difference

2008CK6.34b7.09c-0.75**79.2c94.8c-15.6***238b241c-3NS
UR8.32a8.00b0.32*121.0b145.0b-24.0***361a343b18*
CR8.28a8.45a-0.17NS138.8a171.9a-33.1***362a362a0NS
2009CK6.24c6.47c-0.23NS76.3c92.9c-16.6***147c181c-34**
UR8.01b8.15b-0.14NS118.3b133.8b-15.5***334b308b26*
CR8.62a8.69a-0.07NS133.7a163.5a-29.8***341a334a7NS
2010CK6.11c6.25c-0.14NS76.3c87.6c-11.3***167b174c-7NS
UR7.92b7.88b0.04NS106.7b126.2b-19.5***268a268b0NS
CR8.42a8.57a-0.15NS122.2a146.4a-24.2***281a281a0NS
2011CK6.17c6.25c-0.08NS75.1c86.5c-11.4**150b162b-12NS
UR8.08b7.42b0.66**104.5b129.4b-24.9***262a268a-6NS
CR9.08a9.17a-0.09NS117.0a149.6a-32.6***275a281a-6NS
2012CK6.00c6.33c-0.33NS74.7c84.7c-10.0**162b181c-19NS
UR8.25b7.58b0.67*107.4b126.3b-18.9***268a275b-7NS
CR9.42a9.25a0.17NS118.0a146.9a-28.9***278a293a-15NS
2013CK6.10c6.27c-0.17NS76.9c88.2c-11.3**156b175c-19*
UR8.98b8.55b0.43**110.4b128.9b-18.5***274a244b30*
CR10.00a10.10a-0.10NS120.8a149.9a-29.1***275a281a-6NS
2014CK6.05c6.02c0.03NS81.0c89.7c-8.7*156b176b-20NS
UR8.62b8.52b0.10NS117.0b129.2b-12.2***271a275a-4NS
CR10.10a10.30a-0.20NS128.0a152.8a-24.8***275a281a-6NS
2015CK5.97c6.00c-0.03NS76.8c81.4c-4.6NS150b168b-18NS
UR9.65b9.35b0.30NS114.6b118.2b-3.6NS273a268a5NS
CR10.20a10.60a-0.40NS124.9a136.0a-11.1***275a281a-6NS
2016CK7.03c7.43c-0.40NS
UR9.04b8.99b0.05NSNDNDNDND
CR10.15a10.32a-0.17NS
2017CK5.93c6.53c-0.60**
UR7.03b6.81b0.22NSNDNDNDND
CR7.97a8.44a-0.47*
2018CK6.33b6.18c0.15NS75.5c83.6c-8.1*162c154c8NS
UR8.02a7.03b0.99**113.0b129.1b-16.1***251b224b27**
CR8.07a8.54a-0.47NS122.4a143.4a-21.0***276a284a-8NS
2019CK6.25c6.51c-0.26NS72.9c80.4c-7.6*151c155c-4NS
UR7.91b7.49b0.42*109.7b122.5b-12.8*261b235b26***
CR8.67a9.04a-0.37NS122.8a144.9a-22.1***285a297a-12*
2020CK6.79b6.81b-0.02NS75.8c87.0c-11.2**150c169b-19**
UR9.50a9.45a0.05NS114.3b134.3b-20.0**265b278a-13NS
CR9.62a9.47a0.15NS124.3a146.5a-22.2***278a286a-8NS
Table 2 Effects of interaction among cultivation pattern, N fertilizer type and year on grain yield, plant N uptake amount and effective panicle number

氮肥类型

N fertilizer

type

有效穗数

Effective panicle

number/(104 hm-2)

每穗粒数

Grains per

panicle

结实率

Grain filling

rate/%

千粒质量

1 000-grain

mass/g

水稻产量

Grain yield/

(t/hm2)

氮肥利用率

N use

efficiency/%

TFPMTFPMTFPMTFPMTFPMTFPM
CK162bB176cA116c112c80.2c80.1c25.4b25.3c6.25c6.47c
UR280a271b136b138b86.4b84.7b26.7a26.8b8.41b8.09b26.7bB31.4bA
CR290a296a151a146a88.5a88.6a26.8aB27.3aA9.13a9.30a35.9aB46.8aA
Table 3 Effects of interaction between cultivation pattern and N fertilizer type on grain yield and its components and N use efficiency
Fig. 1 Effects of interaction between cultivation pattern/N fertilizer type and year on N use efficiency of riceDifferent lowercase letters above bars indicate significant differences among different years under the same cultivation pattern/N fertilizer type at the 0.05 probability level; single asterisk (*), double asterisks (**) and triple asterisks (***) indicate significant differences between different cultivation patterns/N fertilizer types in the same year at the 0.05, 0.01 and 0.001 probability levels, respectively.

参量

Parameter

水稻产量

Grain yield

植株吸氮量

Plant N

uptake amount

氮肥利用率

N use

efficiency

有效穗数

Effective

panicle number

每穗粒数

Grains per

panicle

结实率

Grain filling

rate

千粒质量

1 000-grain

mass

水稻产量

Grain yield

1.000

植株吸氮量

Plant N uptake amount

0.787**1.000

氮肥利用率

N use efficiency

0.351**0.928**1.000

有效穗数

Effective panicle number

0.759**0.865**0.491**1.000

每穗粒数

Grains per panicle

0.752**0.767**0.435**0.822**1.000

结实率

Grain filling rate

0.603**0.620**0.344**0.728**0.662**1.000

千粒质量

1 000-grain mass

0.522**0.525**0.1050.487**0.402**0.544**1.000
Table 4 Correlation analysis of grain yield and its components, plant N uptake amount, N use efficiency under different cultivation patterns and N fertilizer types

氮肥类型

N fertilizer type

pH值

pH

value

有机质

Organic matter/

(g/kg)

全氮

Total N/

(g/kg)

碱解氮

Alkali-hydrolyzable N/

(mg/kg)

有效磷

Available P/

(mg/kg)

速效钾

Available K/

(mg/kg)

CK5.37b17.6b1.06c99.6c21.5c38.9c
UR5.38b18.1a1.17b108.5b23.2b41.1b
CR5.42a18.2a1.23a112.3a23.8a42.7a
Table 5 Effects of different N fertilizer types on soil physicochemical properties

栽培模式

Cultivation pattern

pH值

pH

value

有机质

Organic matter/

(g/kg)

全氮

Total N/

(g/kg)

碱解氮

Alkali-hydrolyzable N/

(mg/kg)

有效磷

Available P/

(mg/kg)

速效钾

Available K/

(mg/kg)

TF5.31b18.3a1.19a108.9a21.8b42.5a
PM5.47a17.6b1.13b104.6b23.9a39.3b
Table 6 Effects of different cultivation patterns on soil physicochemical properties
Fig. 2 Effects of interaction between different cultivation patterns and years on soil organic matter and alkali-hydrolyzable N contentsDifferent lowercase letters above bars indicate significant differences among different years under the same cultivation pattern at the 0.05 probability level; single asterisk (*) and double asterisks (**) indicate significant differences between different cultivation patterns in the same year at the 0.05 and 0.01 probability levels, respectively.
Fig. 3 Effects of interaction between different cultivation patterns and years on soil available P, available K contents and pH valueDifferent lowercase letters above bars indicate significant differences among different years under the same cultivation pattern at the 0.05 probability level; single asterisk (*), double asterisks (**) and triple asterisks (***) indicate significant differences between different cultivation patterns in the same year at the 0.05, 0.01 and 0.001 probability levels, respectively.

处理

Treatment

总收入

Total

income

地膜费用

Plastic

film cost

覆膜的劳动力成本

Labor cost of covering

plastic film

氮肥费用

N fertilizer

cost

施用氮肥的劳动力成本

Labor cost of N

fertilizer application

能源费用

Energy

cost

其他费用

Other

cost

利润

Profit

TCK16 2602 0403 39510 825
TUR21 8657807602 0403 39514 890
TCR23 7461 8503802 0403 39516 081
PCK16 8267502004903 39511 991
PUR21 0267502007807604903 39514 651
PCR24 1757502001 8503804903 39517 110
Table 7 Average annual income, cost and profit of different cultivation patterns combined with different N fertilizer types

氮肥类型

N fertilizer type

NH4+-N/(mg/kg)NO3-N/(mg/kg)
TFPMTFPM
CK3.27bA3.09bB2.70a2.44b
UR3.27b3.03b2.48a2.67b
CR6.92aA4.70aB3.01aB4.34aA
Table 8 Effects of continuous non-flooding plastic film mulching and applying polymer coated urea for 13 years on soil NH4+-N and NO3-N contents
[1]   ROSA L, CHIARELLI D D, RULLI M C, et al. Global agricultural economic water scarcity[J]. Science Advances, 2020, 6(18): eaaz6031. DOI: 10.1126/sciadv.aaz6031
doi: 10.1126/sciadv.aaz6031
[2]   QIAN Q, GUO L B, SMITH S M, et al. Breeding high-yield superior quality hybrid super rice by rational design[J]. National Science Review, 2016, 3(3): 283-294. DOI: 10.1093/nsr/nww006
doi: 10.1093/nsr/nww006
[3]   TAO Y Y, QU H, LI Q J, et al. Potential to improve N uptake and grain yield in water saving ground cover rice production system[J]. Field Crops Research, 2014, 168: 101-108. DOI: 10.1016/j.fcr.2014.08.014
doi: 10.1016/j.fcr.2014.08.014
[4]   XIN F F, XIAO X M, DONG J W, et al. Large increases of paddy rice area, gross primary production, and grain production in Northeast China during 2000—2017[J]. Science of the Total Environment, 2020, 711: 135183. DOI: 10.1016/j.scitotenv.2019.135183
doi: 10.1016/j.scitotenv.2019.135183
[5]   LI L B, LI F S, DONG Y F, et al. Greenhouse gas emissions and global warming potential in double-cropping rice fields as influenced by two water-saving irrigation modes in South China[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2617-2630. DOI: 10.1007/s42729-020-00328-5
doi: 10.1007/s42729-020-00328-5
[6]   HE Y, ZHANG B, WU Y L, et al. A pilot nationwide baseline survey on the concentrations of neonicotinoid insecticides in tap water from China: implication for human exposure[J]. Environmental Pollution, 2021, 291: 118117. DOI: 10.1016/j.envpol.2021.118117
doi: 10.1016/j.envpol.2021.118117
[7]   SUN Y J, MA J, SUN Y Y, et al. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Research, 2021, 127: 85-98. DOI: 10.1016/j.fcr.2011.11.015
doi: 10.1016/j.fcr.2011.11.015
[8]   LIANG H, HU K L, QIN W, et al. Ground cover rice production system reduces water consumption and nitrogen loss and increases water and nitrogen use efficiencies[J]. Field Crops Research, 2019, 233: 70-79. DOI: 10.1016/j.fcr.2019.01.003
doi: 10.1016/j.fcr.2019.01.003
[9]   路兴花,吴良欢,庞林江,等.连续覆膜旱作稻氮、磷、钾养分分布特征探讨[J].土壤通报,2010,41(1):145-149. DOI:10.19336/j.cnki.trtb.2010.01.031
LU X H, WU L H, PANG L J, et al. Distribution of N, P and K in rice plant under a long-term located plastic film mulching cultivation[J]. Chinese Journal of Soil Science, 2010, 41(1): 145-149. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2010.01.031
[10]   GUO L, LIU M J, ZHANG Y N, et al. Yield differences get large with ascendant altitude between traditional paddy and water-saving ground cover rice production system[J]. European Journal of Agronomy, 2018, 92: 9-16. DOI: 10.1016/j.eja.2017.09.005
doi: 10.1016/j.eja.2017.09.005
[11]   LYU Y F, YANG X D, PAN H Y, et al. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: a study case from Southwest China[J]. Journal of Cleaner Production, 2021, 293: 126198. DOI: 10.1016/j.jclepro.2021.126198
doi: 10.1016/j.jclepro.2021.126198
[12]   DING W C, XU X P, HE P P, et al. Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: a meta-analysis[J]. Field Crops Research, 2018, 227: 11-18. DOI: 10.1016/j.fcr.2018.08.001
doi: 10.1016/j.fcr.2018.08.001
[13]   闫鸿媛.长期施肥下我国典型土壤粮食作物氮肥利用率时空演变特征[D].武汉:华中农业大学,2010.
YAN H Y. Tempo-spatial variation of nitrogen use efficiency of grain food as affected by long-term fertilization in the typical soil of China[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract)
[14]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[15]   WANG D Y, XU C M, YE C, et al. Low recovery efficiency of basal fertilizer-N in plants does not indicate high basal fertilizer-N loss from split-applied N in transplanted rice[J]. Field Crops Research, 2018, 229: 8-16. DOI: 10.1016/j.fcr.2018.09.008
doi: 10.1016/j.fcr.2018.09.008
[16]   CHEN J, FAN X L, ZHANG L D, et al. Research progress in lignin-based slow/controlled release fertilizer[J]. ChemSusChem, 2020, 13(17): 4356-4366. DOI: 10.1002/cssc.202000455
doi: 10.1002/cssc.202000455
[17]   ZHANG G B, YANG Y T, HUANG Q, et al. Reducing yield-scaled global warming potential and water use by rice plastic film mulching in a winter flooded paddy field[J]. European Journal of Agronomy, 2020, 114: 126007. DOI: 10.1016/j.eja.2020.126007
doi: 10.1016/j.eja.2020.126007
[18]   LIU H Y, WON P L P, BANAYO N P M, et al. Late-season nitrogen applications improve grain yield and fertilizer-use efficiency of dry direct-seeded rice in the tropics[J]. Field Crops Research, 2019, 233: 114-120. DOI: 10.1016/j.fcr.2019.01.010
doi: 10.1016/j.fcr.2019.01.010
[19]   赵倩,姜鸿明,孙美芝,等.山东省区试小麦产量与产量构成因素的相关和通径分析[J].中国农学通报,2011,27(7):42-45.
ZHAO Q, JIANG H M, SUN M Z, et al. Correlation and path analysis of yield components of winter wheat varieties with high yield potential cultured in regional trials of Shandong Province[J]. Chinese Agricultural Science Bulletin, 2011, 27(7): 42-45. (in Chinese with English abstract)
[20]   NASAR J, KHAN W, KHAN M Z, et al. Photosynthetic activities and photosynthetic nitrogen use efficiency of maize crop under different planting patterns and nitrogen fertilization[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(3): 2274-2284. DOI: 10.1007/s42729-021-00520-1
doi: 10.1007/s42729-021-00520-1
[21]   VEJAN P, KHADIRAN T, ABDULLAH R, et al. Controlled release fertilizer: a review on developments, applications and potential in agriculture[J]. Journal of Controlled Release, 2021, 339: 321-334. DOI: 10.1016/j.jconrel.2021.10.003
doi: 10.1016/j.jconrel.2021.10.003
[22]   XU R, CHEN S, XU C M, et al. Polymer-coated urea application can increase both grain yield and nitrogen use efficiency in japonica-indica hybrid rice[J]. The Journal of Agricultural Science, 2023, 161(1): 51-59. DOI: 10.1017/S0021859622000673
doi: 10.1017/S0021859622000673
[23]   SHI X R, HU K L, BATCHELOR W D, et al. Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River[J]. Agricultural Water Management, 2020, 228: 105877. DOI: 10.1016/j.agwat.2019.105877
doi: 10.1016/j.agwat.2019.105877
[24]   WANG L, XUE C, PAN X, et al. Application of controlled-release urea enhances grain yield and nitrogen use efficiency in irrigated rice in the Yangtze River Basin, China[J]. Frontiers in Plant Science, 2018, 9: 999. DOI: 10.3389/fpls.2018.00999
doi: 10.3389/fpls.2018.00999
[25]   ZHU W, YANG J S, YAO R J, et al. Nitrate leaching and NH3 volatilization during soil reclamation in the Yellow River Delta, China[J]. Environmental Pollution, 2021, 286: 117330. DOI: 10.1016/j.envpol.2021.117330
doi: 10.1016/j.envpol.2021.117330
[26]   刘新宇,巨晓棠,张丽娟,等.不同施氮水平对冬小麦季化肥氮去向及土壤氮素平衡的影响[J].植物营养与肥料学报,2010,16(2):296-303. DOI:10.11674/zwyf.2010.0206
LIU X Y, JU X T, ZHANG L J, et al. Effects of different N rates on fate of N fertilizer and balance of soil N of winter wheat[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 296-303. (in Chinese with English abstract)
doi: 10.11674/zwyf.2010.0206
[27]   LI Y S, WU L H, ZHAO L M, et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition[J]. Soil and Tillage Research, 2007, 93(2): 370-378. DOI: 10.1016/j.still.2006.05.010
doi: 10.1016/j.still.2006.05.010
[28]   LIU X J, WANG J C, LU S H, et al. Effects of non-flooded mulching cultivation on crop yield, nutrient uptake and nutrient balance in rice-wheat cropping systems[J]. Field Crops Research, 2003, 83(3): 297-311. DOI: 10.1016/S0378-4290(03)00079-0
doi: 10.1016/S0378-4290(03)00079-0
[29]   LIN Y X, YE G P, KUZYAKOV Y, et al. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa[J]. Soil Biology and Biochemistry, 2019, 134: 187-196. DOI: 10.1016/j.soilbio.2019.03.030
doi: 10.1016/j.soilbio.2019.03.030
[30]   尹金来,周春霖,沈其荣,等.水稻水作与旱作条件下土壤和植物磷素有效性的研究[J].南京农业大学学报,2002,25(4):53-56.
YIN J L, ZHOU C L, SHEN Q R, et al. Availabilities of phosphorus in soil and rice plant under waterlogged and aerobic conditions[J]. Journal of Nanjing Agricultural University, 2002, 25(4): 53-56. (in Chinese with English abstract)
[31]   ZHANG W L, LI C B, LI G T, et al. Biochar alters inorganic phosphorus fractions in tobacco-growing soil[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(2): 1689-1699. DOI: 10.1007/s42729-021-00472-6
doi: 10.1007/s42729-021-00472-6
[32]   周旋,丁俊山,吴良欢,等.不同工艺复合肥对小白菜产量和品质的影响[J].浙江大学学报(农业与生命科学版),2016,42(5):626-636. DOI:10.3785/j.issn.1008-9209.2016.03.311
ZHOU X, DING J S, WU L H, et al. Effects of compound fertilizers by different processes on yield and quality of pakchoi (Brassica chinensis L.)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(5): 626-636. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2016.03.311
[33]   胡敏,向永生,鲁剑巍.石灰用量对酸性土壤pH值及有效养分含量的影响[J].中国土壤与肥料,2017(4):72-77. DOI:10.11838/sfsc.20170411
HU M, XIANG Y S, LU J W. Effects of lime application rates on soil pH and available nutrient content in acidic soils[J]. Soil and Fertilizer Sciences in China, 2017(4): 72-77. (in Chinese with English abstract)
doi: 10.11838/sfsc.20170411
[34]   张小翠,戴其根,胡星星,等.不同质地土壤下缓释尿素与常规尿素配施对水稻产量及其生长发育的影响[J].作物学报,2012,38(8):1494-1503. DOI:10.3724/SP.J.1006.2012.01494
ZHANG X C, DAI Q G, HU X X, et al. Effects of slow-release urea combined with conventional urea on rice output and growth in soils of different textures[J]. Acta Agronomica Sinica, 2012, 38(8): 1494-1503. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01494
[35]   郑圣先,聂军,戴平安,等.控释氮肥对杂交水稻生育后期根系形态生理特征和衰老的影响[J].植物营养与肥料学报,2006,12(2):188-194. DOI:10.11674/zwyf.2006.0208
ZHENG S X, NIE J, DAI P A, et al. Effect of controlled release nitrogen fertilizer on the morphological and physiological characteristics and senescence of root system during late growth stages of hybrid rice[J]. Plant Nutrition and Fertilizer Science, 2006, 12(2): 188-194. (in Chinese with English abstract)
doi: 10.11674/zwyf.2006.0208
[36]   李新乐,侯向阳,穆怀彬,等.连续6年施磷肥对土壤磷素积累、形态转化及有效性的影响[J].草业学报,2015,24(8):218-224. DOI:10.11686/cyxb2014388
LI X L, HOU X Y, MU H B, et al. P fertilization effects on the accumulation, transformation and availability of soil phosphorus[J]. Acta Prataculturae Sinica, 2015, 24(8): 218-224. (in Chinese with English abstract)
doi: 10.11686/cyxb2014388
[37]   周启运,郑重谊,荊永锋,等.湘南稻作烟区不同土层土壤有机质含量与氮磷钾关系研究[J].作物杂志,2021(5):114-119. DOI:10.16035/j.issn.1001-7283.2021.05.017
ZHOU Q Y, ZHENG Z Y, JING Y F, et al. Study on soil organic matter content and its relationship with nitrogen, phosphorus and potassium in different soil layers of rice-growing tobacco areas in Southern Hunan[J]. Crops, 2021(5): 114-119. (in Chinese with English abstract)
doi: 10.16035/j.issn.1001-7283.2021.05.017
[38]   宋婷,王红丽,陈年来,等.旱地全膜覆土穴播和全沙覆盖平作对小麦田土壤水分和产量的调节机制[J].中国生态农业学报,2014,22(10):1174-1181. DOI:10.13930/j.cnki.cjea.140216
SONG T, WANG H L, CHEN N L, et al. Regulation of whole field soil-plastic mulching with bunch planting and whole field sand mulching with flat planting on soil moisture and yield of spring wheat in semiarid dryland areas[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1174-1181. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.140216
[39]   李世朋,蔡祖聪,杨浩,等.长期定位施肥与地膜覆盖对土壤肥力和生物学性质的影响[J].生态学报,2009,29(5):2489-2498. DOI:10.3321/j.issn:1000-0933.2009.05.036
LI S P, CAI Z C, YANG H, et al. Effects of long-term fertilization and plastic film covering on some soil fertility and microbial properties[J]. Acta Ecologica Sinica, 2009, 29(5): 2489-2498. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-0933.2009.05.036
[40]   李毅,王全九,王文焰,等.覆膜开孔土壤蒸发的水盐分布特征及运移规律研究[J].植物营养与肥料学报,2005,11(2):187-193. DOI:10.3321/j.issn:1008-505X.2005.02.009
LI Y, WANG Q J, WANG W Y, et al. Distribution and movement characteristics of soil water and soil salt during evaporation from perforated plastic mulch[J]. Plant Nutrition and Fertilizer Science, 2005, 11(2): 187-193. (in Chinese with English abstract)
doi: 10.3321/j.issn:1008-505X.2005.02.009
[1] Attached Table S1 Download
[1] Jia WEN,Xifeng LIANG,Yongwei WANG. Research on semantic segmentation of parents in hybrid rice breeding based on improved DeepLabV3+ network model[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 893-902.
[2] Huiling ZENG,Zuyi MO,Qiaoxian PU,Jiashu WANG,Kai FAN,Zhaowei LI. Cloning and expression analysis of OsSPL3 promoter in rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 319-327.
[3] Linze YANG,Huixia SHOU. Effects of deoxymugineic acid from rice root exudates on bacterial community composition in rhizosphere and root endosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 376-388.
[4] Mengqi Lü, Sunghwan JUNG, Zhihong MA, Liang WAN, Dawei SUN, Haiyan CEN. Phenotyping analysis of rice lodging based on a nondestructive mechanical platform[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 129-140.
[5] Jiannan ZHANG,Yiming WANG,Jiejing ZHANG,Lei CHEN,Jinyan LUO,Jianping YI,Bin LI,Qianli AN. Detection and identification of Xanthomonas oryzae pv. oryzicola using quantitative real-time PCR and digital PCR[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 55-64.
[6] Peng KUAI,Yonggen LOU. Research advances in biology, ecology and management of rice planthoppers[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 692-700.
[7] Longda GONG,Kai CHEN,Dan LI,Mei CAI,Jingwen WANG,Qichun ZHANG. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368.
[8] Zhiyun PENG,Xu Lü,Riqu WUZA,Chuanhai SHU,Jie SHEN,Kaihong XIANG,Zhiyuan YANG,Jun MA. Effects of straw returning and nitrogen fertilizer management on soil nitrogen supply and yield of direct seeding rice under wheat (rape)-rice rotation[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 45-56.
[9] Pengyao XIE,Haowei FU,Zheng TANG,Zhihong MA,Haiyan CEN. RGB imaging-based detection of rice leaf blast spot and resistance evaluation at the canopy scale[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 415-428.
[10] Yixin WU,Qiwei HUANG,Mujun YE,Yongchao LIANG,Hongyun PENG. Effects of topdressing of silicon fertilizer on stress resistance and yield of rice under reduced pesticide application[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 507-516.
[11] Hongyu LI,Kun LI,Zhi YANG. Retrieval of rice phenological stages based on time-series full-polarization synthetic aperture radar data[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 404-414.
[12] Zhen WANG,Lei HE,Yingping XIAO,Xiandong LU,Yanhong LIU,Wen LU,Shoufeng WANG. Rapid detection of Bacillus cereus in rice by isothermal amplification with microfluidic chip method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 193-202.
[13] Yuying LIU,Yan ZHANG,Zheyuan WANG,Tingqiang LI. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 223-232.
[14] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[15] Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.