Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 86-97    DOI: 10.3785/j.issn.1008-9209.2023.04.041
食品科学     
不同产地商品山楂干的品质差异分析
舒西盼1,2,3(),柴子淇1,2,3,李鲜3,4,孙崇德3,4,田金虎1,2,5,叶兴乾1,2,4,5()
1.浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
2.浙江大学新农村发展研究院,浙江 杭州 310058
3.浙江大学农业与生物技术学院,浙江 杭州 310058
4.浙江大学山东(临沂)现代农业研究院,山东 临沂 276000
5.浙江大学中原研究院,河南 郑州 450000
Quality difference analysis of commercial dried hawthorn fruits from different producing areas
Xipan SHU1,2,3(),Ziqi CHAI1,2,3,Xian LI3,4,Chongde SUN3,4,Jinhu TIAN1,2,5,Xingqian YE1,2,4,5()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.The Rural Development Academy, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, Shandong, China
5.Zhejiang University Zhongyuan Institute, Zhengzhou 450000, Henan, China
 全文: PDF(1186 KB)   HTML
摘要:

本研究以10种不同产地的商品山楂干[包括7种普通山楂(商品名“北山楂”)、2种台湾林檎(商品名“广山楂”)和1种野山楂(商品名“南山楂”)]为研究对象,测定其主要营养成分和生化指标,并在此基础上对山楂进行品质差异分析和主成分分析。结果表明:在3类商品山楂干中,北山楂的可滴定酸含量最高,广山楂的糖酸比最高,而可溶性膳食纤维、α-生育酚和β-胡萝卜素含量排序均为北山楂>南山楂>广山楂。主成分分析结果表明,湖北黄冈的‘野山楂’和天津蓟州的‘铁山楂’在主要活性成分(总酚、总黄酮、总原花青素、总膳食纤维)含量方面整体表现较优;山东临沂的‘大金星’和河南新乡的‘豫北红’等北山楂在可滴定酸、可溶性膳食纤维和可溶性糖含量方面相较于南山楂和广山楂综合表现更优。本研究系统梳理了我国不同产区主要种类商品山楂干的品质差异,可为我国山楂资源的多元化开发利用提供数据支撑。

关键词: 山楂品质营养组成多酚主成分分析    
Abstract:

Taking ten kinds of commercial dried hawthorn fruits [seven kinds of Crataegus pinnatifida Bge. or C. pinnatifida Bge. var. major N.E.Br. (with the trade name “Beishanzha”), two kinds of Malus doumeri (Bois) Chev. (with the trade name “Guangshanzha”) and one kind of C. cuneata Sieb. et Zucc. (with the trade name “Nanshanzha”)] from different producing areas of China as research materials, the contents of main nutrients and biochemical indexes were determined, and the quality difference analysis and principal component analysis were carried out. The results showed that among the three types of commercial dried hawthorn fruits, Beishanzha had the highest titratable acid content, while Guangshanzha had the highest ratio of soluble sugar to titratable acid. The contents of soluble dietary fiber, α-tocopherol and β-carotene decreased in the order of Beishanzha, Nanshanzha and Guangshanzha. The results of principal component analysis indicated that ‘Yeshanzha’ from Huanggang of Hubei Province and ‘Tieshanzha’ from Jizhou of Tianjin City showed the best overall performance in the contents of main active components (total phenolics, total flavonoids, total procyanidins and total dietary fiber); Beishanzha, especially ‘Dajinxing’ from Linyi of Shandong Province and ‘Yubeihong’ from Xinxiang of Henan Province, had greater contents of titratable acid, soluble dietary fiber and soluble sugar compared with Guangshanzha and Nanshanzha. This study systematically sorted out the quality differences of commercial dried hawthorn fruits from different areas in China, and the results can provide data to support the diversified development and utilization of Chinese commercial hawthorn resources.

Key words: hawthorn    quality    nutritional components    polyphenols    principal component analysis
收稿日期: 2023-04-04 出版日期: 2024-03-01
CLC:  S661.5  
基金资助: 国家自然科学基金项目(31901616);浙江省自然科学基金项目(LY22C200007);2022年度山东省重点扶持区域引进急需紧缺人才项目“特色果蔬功能性罐头研制及产业化”(2022JQRC)
通讯作者: 叶兴乾     E-mail: 22016152@zju.edu.cn;psu@zju.edu.cn
作者简介: 舒西盼(https://orcid.org/0009-0000-2321-7075),E-mail:22016152@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
舒西盼
柴子淇
李鲜
孙崇德
田金虎
叶兴乾

引用本文:

舒西盼,柴子淇,李鲜,孙崇德,田金虎,叶兴乾. 不同产地商品山楂干的品质差异分析[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 86-97.

Xipan SHU,Ziqi CHAI,Xian LI,Chongde SUN,Jinhu TIAN,Xingqian YE. Quality difference analysis of commercial dried hawthorn fruits from different producing areas. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 86-97.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.04.041        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/86

编号

Identifier

产地

Producing area

品种

Variety

分类单元

Taxon

商品名

Trade name

BSZ-1辽宁本溪‘山里红’C. pinnatifida Bge.北山楂
BSZ-2河北承德‘铁山楂’C. pinnatifida Bge. var. major N.E.Br.北山楂
BSZ-3河南新乡‘豫北红’C. pinnatifida Bge. var. major N.E.Br.北山楂
BSZ-4山东临沂‘大金星’C. pinnatifida Bge. var. major N.E.Br.北山楂
BSZ-5陕西渭南‘大五棱’C. pinnatifida Bge. var. major N.E.Br.北山楂
BSZ-6山西运城‘大金星’C. pinnatifida Bge. var. major N.E.Br.北山楂
BSZ-7天津蓟州‘铁山楂’C. pinnatifida Bge. var. major N.E.Br.北山楂
GSZ-1广东茂名‘大果山楂’M. doumeri (Bois) Chev.广山楂
GSZ-2广西百色‘大果山楂’M. doumeri (Bois) Chev.广山楂
NSZ湖北黄冈‘野山楂’C. cuneata Sieb. et Zucc.南山楂
表 1  10种商品山楂干的相关信息

项目

Item

水分

Moisture

灰分

Ash

蛋白质

Protein

粗脂肪

Crude fat

碳水化合物

Carbohydrate

BSZ-18.50±0.06e3.07±0.08c0.87±0.03e1.43±0.09b86.13±0.08b
BSZ-211.45±0.46a3.05±0.02c1.89±0.13b0.93±0.06d82.68±0.34f
BSZ-310.61±0.29b2.73±0.10e1.09±0.06d1.09±0.08c84.49±0.32cd
BSZ-47.75±0.50f2.88±0.12d1.16±0.08d1.11±0.05c87.10±0.55a
BSZ-58.63±0.33e2.70±0.03e1.83±0.07b1.18±0.05c85.66±0.28b
BSZ-68.73±0.55de2.54±0.05f1.85±0.02b1.33±0.06b85.56±0.60b
BSZ-79.78±0.20c3.21±0.02b1.85±0.12b1.71±0.11a83.45±0.28e
GSZ-19.29±0.17cd2.44±0.03fg1.33±0.12c0.86±0.08d86.07±0.20b
GSZ-210.69±0.30b2.38±0.11g1.23±0.11cd1.45±0.07b84.24±0.38d
NSZ7.70±0.25f3.44±0.08a2.16±0.07a1.80±0.10a84.89±0.23c
平均值 Average9.312.841.531.2985.03
范围 Range7.70~11.452.38~3.440.87~2.160.86~1.8082.68~87.10
变异系数 Coefficient of variation13.8112.2528.5524.131.58
表 2  10种商品山楂干的基本组分含量 (%)

项目

Item

pH

可溶性糖

SS/%

可滴定酸

TA/%

糖酸比

SS/TA

BSZ-12.62±0.02cd36.53±0.77f7.06±0.06c5.18±0.12f
BSZ-22.49±0.01f41.31±0.33a7.59±0.04b5.44±0.04e
BSZ-32.54±0.10ef40.24±0.22b8.18±0.02a4.92±0.03g
BSZ-42.50±0.02f37.44±0.44e8.06±0.04a4.65±0.08h
BSZ-52.58±0.04de41.95±0.76a7.03±0.06c5.97±0.16c
BSZ-62.51±0.02f40.02±0.10b6.55±0.03d6.11±0.05c
BSZ-72.68±0.01c37.68±0.41de6.59±0.06d5.72±0.05d
GSZ-12.63±0.02cd38.62±0.63c4.95±0.03e7.81±0.15b
GSZ-23.02±0.02b38.49±0.65cd2.92±0.01g13.21±0.20a
NSZ3.10±0.02a13.39±0.38g3.33±0.21f4.03±0.26i
平均值 Average2.6736.576.236.30
范围 Range2.49~3.1013.39~41.952.92~8.184.03~13.21
变异系数 Coefficient of variation/%8.1822.7730.0941.74
表3  10种商品山楂干的糖酸指标

项目

Item

L*a*b*
BSZ-157.88±1.02d10.64±0.31f21.53±0.33f
BSZ-261.80±0.75bc11.78±0.32de28.99±0.10b
BSZ-360.56±0.59c14.71±0.50b27.12±0.63c
BSZ-466.64±1.26a13.46±0.36c24.62±0.31e
BSZ-557.26±0.51d12.29±0.53d30.25±0.20a
BSZ-652.74±0.72e13.69±0.43c27.39±0.47c
BSZ-762.95±0.79b11.05±0.73ef24.49±1.72e
GSZ-146.02±1.41g18.41±0.13a26.45±0.47cd
GSZ-250.69±1.03f17.81±0.82a26.38±0.31cd
NSZ42.81±0.72h14.99±0.38b25.78±0.49d
平均值 Average55.9413.8826.30
范围 Range42.81~66.6410.64~18.4121.53~30.25
变异系数 Coefficient of variation/%13.3518.719.21
表4  10种商品山楂干的颜色参数

项目

Item

总酚

TP/(mg/g)

总黄酮

TF/(mg/g)

总原花青素

TPA/(mg/g)

不溶性膳食纤维

ISDF/%

可溶性膳食纤维

SDF/%

总膳食纤维

TDF/%

BSZ-149.25±0.61g31.02±1.21g31.98±1.25e15.52±0.75d8.25±0.28bcd21.95±0.13d
BSZ-263.59±0.12c48.11±0.43c48.02±1.81c14.99±0.54d7.96±0.30cd23.77±1.03d
BSZ-358.79±0.23e37.58±0.63e39.20±1.51d12.81±0.45d9.15±0.30a22.95±0.84d
BSZ-461.25±0.95d46.81±1.44c40.60±4.01d12.56±0.65d8.41±0.04abc20.97±0.69d
BSZ-561.92±0.60d44.35±0.19d36.79±1.84d13.15±0.83d8.80±0.12ab21.94±0.71d
BSZ-651.59±0.64f32.94±0.79f37.59±3.53d25.29±1.15c8.83±0.10ab34.12±1.05c
BSZ-768.39±0.99b53.73±1.36b60.26±1.74b34.76±3.15b8.03±0.82cd42.79±3.98b
GSZ-151.25±0.99f37.19±0.38e50.03±3.31c29.96±1.81c2.40±0.05f32.36±1.76c
GSZ-227.72±0.60h16.04±0.16h21.54±1.21f28.30±1.64c4.48±0.11e32.78±1.53c
NSZ72.52±0.69a55.88±2.30a65.68±2.84a46.54±4.72a7.56±0.16d54.10±4.89a
平均值 Average56.6340.3743.1723.397.3830.77
范围 Range27.72~72.5216.04~55.8821.54~65.6812.56~46.542.40~9.1520.97~54.10

变异系数

Coefficient of variation/%

22.3229.6430.4648.5329.0234.86
表5  10种商品山楂干的主要活性成分含量

项目

Item

K

Ca

Mg

Fe

BSZ-16 808.17±37.63d1 533.25±48.94e855.86±0.51d23.74±0.35h
BSZ-27 979.21±400.63c4 216.19±151.09a873.28±14.10d124.42±1.32c
BSZ-38 382.81±287.88c2 255.57±29.29b755.30±10.54f47.56±0.85g
BSZ-48 082.55±358.89c2 001.11±20.23c804.08±1.82e134.22±0.88b
BSZ-56 654.50±12.28d1 426.15±51.69ef729.46±0.71fg55.56±0.44f
BSZ-65 419.48±44.01e1 845.11±27.75d802.90±0.83e190.34±0.83a
BSZ-79 368.34±320.64b2 122.78±113.77bc1 126.11±1.41b22.66±0.40h
GSZ-113 395.08±560.12a1 327.25±65.39f941.74±40.30c100.45±0.12d
GSZ-26 961.13±163.53d1 560.19±75.61e719.29±45.10g134.54±1.40b
NSZ6 585.24±311.13d2 083.00±84.24c1 283.07±2.93a61.49±0.35e
平均值 Average7 963.652 037.06889.1189.50
范围 Range5 419.48~13 395.081 327.25~4 216.19719.29~1 283.0722.66~190.34
变异系数 Coefficient of variation/%27.7940.7520.6262.35

项目

Item

Zn

维生素C

Vitamin C

α-生育酚

α-tocopherol

β-胡萝卜素

β-carotene

BSZ-112.33±0.17g115.98±0.79f14.47±0.51cd1.50±0.01g
BSZ-230.50±0.21c171.28±5.12c20.42±0.61b6.63±0.06d
BSZ-361.76±0.23a132.98±6.26e25.09±0.74a11.65±0.09a
BSZ-430.36±0.97c378.38±2.46a20.25±0.39b9.63±0.03b
BSZ-512.73±0.17g227.04±4.52b13.89±0.57d6.09±0.06e
BSZ-618.02±0.20e153.63±8.06d13.63±0.44d4.66±0.03f
BSZ-728.70±0.61d118.49±0.62f14.81±0.46c6.76±0.04c
GSZ-114.72±0.27f134.12±1.64e1.46±0.06gND
GSZ-212.32±0.12g136.22±1.87e2.79±0.10fND
NSZ40.43±0.25b139.81±2.16e3.98±0.50e1.06±0.02h
平均值 Average26.19170.7913.084.80
范围 Range12.32~61.76115.98~378.381.46~25.090~11.65
变异系数 Coefficient of variation/%60.7046.6961.3285.13
表6  10种商品山楂干的微量营养成分含量 (mg/kg)

主成分

Principal

component

特征值

Eigenvalue

贡献率

Contribution

rate/%

累积贡献率

Cumulative

contribution

rate/%

14.75047.50147.501
23.66036.59784.098
30.9629.62193.719
40.4234.23297.951
50.1601.60299.553
60.0200.20499.757
70.0150.15399.910
80.0080.08599.995
90.0010.005100.000
表7  主成分分析的特征值、方差贡献率及累计贡献率
图1  主成分因子载荷矩阵热图图例表示颜色与图中数据(载荷系数或公因子方差)的对应关系。

编号

Identifier

产地-品种

Producing area-variety

主成分1

PC1

主成分2

PC2

得分

Score

排序

Rank

得分

Score

排序

Rank

BSZ-1辽宁本溪-‘山里红’-0.51890.4155
BSZ-2河北承德-‘铁山楂’0.03830.8563
BSZ-3河南新乡-‘豫北红’-0.12150.9432
BSZ-4山东临沂-‘大金星’-0.09840.9491
BSZ-5陕西渭南-‘大五棱’-0.33880.5044
BSZ-6山西运城-‘大金星’-0.18260.2286
BSZ-7天津蓟州-‘铁山楂’1.10420.0197
GSZ-1广东茂名-‘大果山楂’-0.3127-0.6128
GSZ-2广西百色-‘大果山楂’-1.67710-1.94110
NSZ湖北黄冈-‘野山楂’2.1051-1.3629
表8  10种商品山楂干的主成分因子得分
1 董文轩.中国果树科学与实践:山楂[M].西安:陕西科学技术出版社,2015:38-68.
DONG W X. Fruit Tree Science and Practice in China: Hawthorn[M]. Xi’an: Shaanxi Science & Technology Press, 2015: 38-68. (in Chinese)
2 国家药典委员会.中华人民共和国药典[M].北京:中国医药科技出版社,2020:33.
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medical Science Press, 2020: 33. (in Chinese)
3 黄燮才.中药山楂原植物的研究[J].广西植物,1989,9(4):303-310.
HUANG S Z. Study on the original plants of Chinese drug Shanzha[J]. Guihaia, 1989, 9(4): 303-310. (in Chinese with English abstract)
4 冉昆,王宝广,王宏伟,等.我国山楂地理标志保护现状与发展对策[J].中国南方果树,2022,51(6):247-251. DOI:10.13938/j.issn.1007-1431.20220304
RAN K, WANG B G, WANG H W, et al. Present situation and development countermeasures of geographical indications protection of hawthorn in China[J]. South China Fruits, 2022, 51(6): 247-251. (in Chinese)
doi: 10.13938/j.issn.1007-1431.20220304
5 国家中医药管理局《中华本草》编委会.中华本草:4[M].上海:上海科学技术出版社,1999:124-135.
State Administration of Traditional Chinese Medicine. Editorial Board of Chinese Materia Medica . Chinese Materia Medica: 4[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1999: 124-135. (in Chinese)
6 广西壮族自治区食品药品监督管理局.广西壮族自治区壮药质量标准:第二卷(2011年版)[M].南宁:广西科学技术出版社,2011.
Food and Drug Administration of Guangxi Zhuang Autonomous Region. Quality Standards for Zhuang Medicine in Guangxi Zhuang Autonomous Region: Volume 2 (2011 Edition)[M]. Nanning: Guangxi Science & Technology Publishing House, 2011. (in Chinese)
7 ZHANG J, CHAI X Y, ZHAO F L, et al. Food applications and potential health benefits of hawthorn[J]. Foods, 2022, 11(18): 2861. DOI: 10.3390/foods11182861
doi: 10.3390/foods11182861
8 高远,张立军.我国山楂加工产业的现状及发展建议[J].中国果菜,2020,40(9):36-39. DOI:10.19590/j.cnki.1008-1038.2020.09.008
GAO Y, ZHANG L J. The present situation and development suggestion of hawthorn processing industry in China[J]. China Fruit & Vegetable, 2020, 40(9): 36-39. (in Chinese with English abstract)
doi: 10.19590/j.cnki.1008-1038.2020.09.008
9 ZHENG X W, LI X X, CHEN M, et al. The protective role of hawthorn fruit extract against high salt-induced hyper-tension in Dahl salt-sensitive rats: impact on oxidative stress and metabolic patterns[J]. Food & Function, 2019, 10(2): 849-858. DOI: 10.1039/c8fo01818a
doi: 10.1039/c8fo01818a
10 CHENG F Z, JIANG W L, XIONG X S, et al. Ethanol extract of Chinese hawthorn (Crataegus pinnatifida) fruit reduces inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure[J]. Medical Science Monitor, 2020, 26: e926654. DOI: 10.12659/MSM.926654
doi: 10.12659/MSM.926654
11 ZHANG L L, ZHANG L F, XU J G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.)[J]. Scientific Reports, 2020, 10: 8876. DOI: 10.1038/s41598-020-65802-7
doi: 10.1038/s41598-020-65802-7
12 朱彦陈,胡慧明,邵峰,等.南山楂化学成分与药理作用研究进展[J].江西中医药,2014,45(12):67-69.
ZHU Y C, HU H M, SHAO F, et al. Research progress on chemical composition and pharmacological effects of southern hawthorn[J]. Jiangxi Journal of Traditional Chinese Medicine, 2014, 45(12): 67-69. (in Chinese)
13 赵帅,郝二伟,杜正彩,等.广山楂的化学成分、药理作用与质量控制研究进展[J].中成药,2020,42(1):169-175. DOI:10.3969/j.issn.1001-1528.2020.01.035
ZHAO S, HAO E W, DU Z C, et al. Research progress on chemical constituents, pharmacological effects and quality control of Crataegus pinnatifida [J]. Chinese Traditional Patent Medicine, 2020, 42(1): 169-175. (in Chinese)
doi: 10.3969/j.issn.1001-1528.2020.01.035
14 张祺嘉钰,赵佩媛,孙静,等.山楂的化学成分及药理作用研究进展[J].西北药学杂志,2021,36(3):521-523. DOI:10.3969/j.issn.1004-2407.2021.03.037
ZHANG Q J Y, ZHAO P Y, SUN J, et al. Research progress on chemical constituents and pharmacological action of hawthorn[J]. Northwest Pharmaceutical Journal, 2021, 36(3): 521-523. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-2407.2021.03.037
15 MAKSIMOVIĆ Z, MALENČIĆ Đ, KOVAČEVIĆ N. Poly-phenol contents and antioxidant activity of Maydis stigma extracts[J]. Bioresource Technology, 2005, 96(8): 873-877. DOI: 10.1016/j.biortech.2004.09.006
doi: 10.1016/j.biortech.2004.09.006
16 孙立立,谢鸿霞,孙敬勇,等.比色法测定山楂中总黄酮的含量[J].中成药,2001,23(10):748-750. DOI:10.3969/j.issn.1001-1528.2001.10.018
SUN L L, XIE H X, SUN J Y, et al. Determination of flavonoids in Fructus crataegi by colorimetry[J]. Chinese Traditional Patent Medicine, 2001, 23(10): 748-750. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-1528.2001.10.018
17 卢利平,张利,李铀,等.凤冈绿茶中原花青素的提取工艺优化[J].食品工业科技,2020,41(22):204-209. DOI:10.13386/j.issn1002-0306.2020070075
LU L P, ZHANG L, LI Y, et al. Optimization of extraction technology of proanthocyanidins from green tea of Fenggang[J]. Science and Technology of Food Industry, 2020, 41(22): 204-209. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2020070075
18 JURANOVIĆ CINDRIĆ I, KRIZMAN I, ZEINER M, et al. ICP-AES determination of minor- and major elements in apples after microwave assisted digestion[J]. Food Chemistry, 2012, 135(4): 2675-2680. DOI: 10.1016/j.foodchem.2012.07.051
doi: 10.1016/j.foodchem.2012.07.051
19 陈黎,钟辉,郭卫军,等.HPLC法测定鱼腥草中11种维生素的含量[J].中国食品学报,2007,7(6):129-135. DOI:10.16429/j.1009-7848.2007.06.022
CHEN L, ZHONG H, GUO W J, et al. Determination of 11 vitamins in Houttuynia by HPLC[J]. Journal of Chinese Institute of Food Science and Technology, 2007, 7(6): 129-135. (in Chinese with English abstract)
doi: 10.16429/j.1009-7848.2007.06.022
20 DE QUIRÓS A R B, FERNÁNDEZ-ARIAS M, LÓPEZ-HERNÁNDEZ J. A screening method for the determination of ascorbic acid in fruit juices and soft drinks[J]. Food Chemistry, 2009, 116(2): 509-512. DOI: 10.1016/j.foodchem.2009.03.013
doi: 10.1016/j.foodchem.2009.03.013
21 白婧.辽宁主栽山楂品种特征差异与主要功能性成分研究[D].沈阳:沈阳农业大学,2020.
BAI J. Study on the variety characteristics and functional components of cultivated hawthorn[D]. Shenyang: Shenyang Agricultural University, 2020. (in Chinese with English abstract)
22 陈平.四种山楂药材的主要区别[J].广西中医药,2001,24(3):50-51. DOI:10.3969/j.issn.1003-0719.2001.03.034
CHEN P. Main differences between four kinds of hawthorn medicinal materials[J]. Guangxi Journal of Traditional Chinese Medicine, 2001, 24(3): 50-51. (in Chinese)
doi: 10.3969/j.issn.1003-0719.2001.03.034
23 蒋昊.北山楂、南山楂和广山楂性状鉴别和有机酸成分研究进展[J].辽宁中医药大学学报,2023,25(1):132-137. DOI:10.13194/j.issn.1673-842x.2023.01.028
JIANG H. Research progress on character identification and organic acid compositions of Shanzha (Crataegus pinnatifida), Nanshanzha (south Crataegus) and Guangshanzha (cantonese Crataegus)[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2023, 25(1): 132-137. (in Chinese with English abstract)
doi: 10.13194/j.issn.1673-842x.2023.01.028
24 SCHWESINGER W H, KURTIN W E, PAGE C P, et al. Soluble dietary fiber protects against cholesterol gallstone formation[J]. The American Journal of Surgery, 1999, 177(4): 307-310. DOI: 10.1016/S0002-9610(99)00047-1
doi: 10.1016/S0002-9610(99)00047-1
25 GUNNESS P, GIDLEY M J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre poly-saccharides[J]. Food & Function, 2010, 1(2): 149-155. DOI: 10.1039/c0fo00080a
doi: 10.1039/c0fo00080a
26 BROCKMAN D A, CHEN X L, GALLAHER D D. Hydro-xypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats[J]. Nutrition & Metabolism, 2012, 9: 100. DOI: 10.1186/1743-7075-9-100
doi: 10.1186/1743-7075-9-100
27 SCHNEEMAN B O. Dietary fiber and gastrointestinal function[J]. Nutrition Reviews, 1987, 45(5): 129-132.
28 梁水连,吕岱竹,周若浩,等.香蕉中5种矿物质元素含量测定及营养评价[J].食品科学,2019,40(24):241-245. DOI:10.7506/spkx1002-6630-20190830-335
LIANG S L, LÜ D Z, ZHOU R H, et al. Quantitative determination and nutritional evaluation of five minerals in banana[J]. Food Science, 2019, 40(24): 241-245. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20190830-335
29 AKRAM N A, SHAFIQ F, ASHRAF M. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance[J]. Frontiers in Plant Science, 2017, 8: 613. DOI: 10.3389/fpls.2017.00613
doi: 10.3389/fpls.2017.00613
30 CHUNG S, GHELFI M, ATKINSON J, et al. Vitamin E and phosphoinositides regulate the intracellular localization of the hepatic α-tocopherol transfer protein[J]. Journal of Biological Chemistry, 2016, 291(33): 17028-17039. DOI: 10.1074/jbc.M116.734210
doi: 10.1074/jbc.M116.734210
31 WEBER D, GRUNE T. The contribution of β-carotene to vitamin A supply of humans[J]. Molecular Nutrition & Food Research, 2012, 56(2): 251-258. DOI: 10.1002/mnfr.201100230
doi: 10.1002/mnfr.201100230
32 LOU X M, YUAN B, WANG L, et al. Evaluation of physicochemical characteristics, nutritional composition and antioxidant capacity of Chinese organic hawthorn berry (Crataegus pinnatifida)[J]. International Journal of Food Science & Technology, 2020, 55(4): 1679-1688. DOI: 10.1111/ijfs.14437
doi: 10.1111/ijfs.14437
33 LI J, LI Z F, RAGHAVAN G S V, et al. Fuzzy logic control of relative humidity in microwave drying of hawthorn[J]. Journal of Food Engineering, 2021, 310: 110706. DOI: 10.1016/j.jfoodeng.2021.110706
doi: 10.1016/j.jfoodeng.2021.110706
34 吴殿廷,吴迪.用主成分分析法作多指标综合评价应该注意的问题[J].数学的实践与认识,2015,45(20):143-150.
WU D T, WU D. Some problems in comprehensive evaluation of the principal component analysis[J]. Mathematics in Practice and Theory, 2015, 45(20): 143-150. (in Chinese with English abstract)
35 孙博,霍华珍,蔡爱华,等.不同产地大果山楂总黄酮含量及抗氧化活性[J].广西科学,2020,27(4):356-361. DOI:10.13656/j.cnki.gxkx.20200924.003
SUN B, HUO H Z, CAI A H, et al. Total flavonoids content and antioxidant activity of Malus doumeri fruit from different producing areas[J]. Guangxi Sciences, 2020, 27(4): 356-361. (in Chinese with English abstract)
doi: 10.13656/j.cnki.gxkx.20200924.003
36 孙博,霍华珍,蔡爱华,等.HPLC法测定大果山楂果实中八种酚酸类成分的含量[J].广西植物,2021,41(7):1135-1144. DOI:10.11931/guihaia.gxzw202003034
SUN B, HUO H Z, CAI A H, et al. Determination of contents of eight phenolic acids in Malus doumeri fruit by HPLC[J]. Guihaia, 2021, 41(7): 1135-1144. (in Chinese with English abstract)
doi: 10.11931/guihaia.gxzw202003034
37 张泽生,高薇薇,张颖,等.山楂果原花青素稳定性研究[J].食品工业科技,2010,31(8):108-112. DOI:10.13386/j.issn1002-0306.2010.08.032
ZHANG Z S, GAO W W, ZHANG Y, et al. Study on the stability of proanthocyanidins from hawthorn fruit[J]. Science and Technology of Food Industry, 2010, 31(8): 108-112. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2010.08.032
38 LIU H, LIU J C, LÜ Z Z, et al. Effect of dehydration techniques on bioactive compounds in hawthorn slices and their correlations with antioxidant properties[J]. Journal of Food Science and Technology, 2019, 56(5): 2446-2457. DOI: 10.1007/s13197-019-03720-x
doi: 10.1007/s13197-019-03720-x
39 WEI Z Q, AI L, CHEN X, et al. Comparative studies on the regulatory effects of raw and charred hawthorn on functional dyspepsia and intestinal flora[J]. Tropical Journal of Phar-maceutical Research, 2019, 18(2): 333-339. DOI: 10.4314/tjpr.v18i2.16
doi: 10.4314/tjpr.v18i2.16
40 AI L, ZHANG L L, LIANG Q, et al. Investigation of the improving effect of raw and charred hawthorn on functional dyspepsia based on interstitial cells of Cajal[J]. Frontiers in Sustainable Food Systems, 2022, 6: 1010556. DOI: 10.3389/fsufs.2022.1010556
doi: 10.3389/fsufs.2022.1010556
41 GIDLEY M J, YAKUBOV G E. Functional categorisation of dietary fibre in foods: beyond ‘soluble’ vs ‘insoluble’[J]. Trends in Food Science & Technology, 2019, 86: 563-568. DOI: 10.1016/j.tifs.2018.12.006
doi: 10.1016/j.tifs.2018.12.006
42 LOU X M, XU H D, HANNA M, et al. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation[J]. LWT-Food Science and Technology, 2020, 130: 109643. DOI: 10.1016/j.lwt.2020.109643
doi: 10.1016/j.lwt.2020.109643
43 JAKOBEK L, MATIĆ P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science & Technology, 2019, 83: 235-247. DOI: 10.1016/j.tifs.2018.11.024
doi: 10.1016/j.tifs.2018.11.024
[1] 范方媛,俞秋雯,童薏霖,龚淑英,戚建乔,魏福炯,张旭. 浙江典型颗粒型名优绿茶品质特征及关键风味组分研究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 358-367.
[2] 温明霞,奚辉,吴韶辉,李娜,陈喜靖. 滴灌施肥对山地柑橘园生产效应的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 566-572.
[3] 谭洪吉,高艳明,李建设,魏文璐. 不同功能肥料对基质栽培樱桃番茄的品质产量及基质环境的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 434-442.
[4] 洪叶,张国平. 大麦灌浆期干旱胁迫对麦芽主要品质性状的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 135-140.
[5] 罗金燕,郑锡良,戚行江,张淑文,俞浙萍,任海英. 杨梅衰弱病发生测报模型的建立[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 163-171.
[6] 温明霞,王鹏,吴韶辉,黄贝. 不同时期喷硒对‘本地早’柑橘养分吸收和果实品质的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 29-35.
[7] 朱奕凡,王妍,汪国云,周超超,焦云,甘可欣,孙德利,朱长青,贾惠娟,高中山. 不同杨梅品种果实游离氨基酸组成分析[J]. 浙江大学学报(农业与生命科学版), 2021, 47(6): 736-742.
[8] 李璇,金恩惠,沈映斌,张晓,屠幼英,何普明. 不同泥料紫砂壶对乌龙茶茶汤品质的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 577-588.
[9] 柳霖,高峰,韩宁,郑太极,王天龙,周佩华,贺殊敏,王佳佳,傅民杰. 基于黑木耳菌渣的生菜栽培基质研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(4): 492-506.
[10] 王慧茹,闫思华,高艳明,李建设. 不同整枝方式对樱桃番茄果实商品性、营养品质及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 347-353.
[11] 张钟炎,胡鲁巍,陈加威,朱祝军,祝彪. 矮生观赏番茄种质资源农艺性状鉴定及观赏性评价[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 158-170.
[12] 周森杰,黄创盛,李春霖,龚淑英,郭昊蔚,童薏霖,范方媛. 不同香气类型龙井茶香气组成及其相关组分比较[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 203-211.
[13] 高珊,衡诺,郭勇,陈余,董颖超,冯保芹,齐晓龙,吕学泽. 饲粮中添加生物活性硒对蛋鸡生产性能、蛋品质和蛋黄中硒含量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 261-267.
[14] 赵航晔,夏琛,何普明,屠幼英. 茶多酚抗炎和促外伤愈合作用及其机制[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 118-126.
[15] 刘亚文,于飞,陈聪,严斯惟,吕杨俊,朱跃进,孔俊豪,杨秀芳,吴媛媛,何普明,屠幼英,李博. 不同包装材料对正山小种红茶贮藏品质的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 60-73.