Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 75-85    DOI: 10.3785/j.issn.1008-9209.2023.03.011
食品科学     
挥发性有机化合物对桃果实采后褐腐病控制及感官品质的影响
李志昊1(),林斯茵1,高颖1,杨灿1,蒋丹1,张波1,2()
1.浙江大学农业与生物技术学院果实品质生物学实验室/浙江省园艺植物整合生物学研究与应用重点实验室, 浙江 杭州 310058
2.浙江大学山东(临沂)现代农业研究院, 山东 临沂 276000
Effects of volatile organic compounds on postharvest brown rot control and sensory quality of peach fruit
Zhihao LI1(),Siyin LIN1,Ying GAO1,Can YANG1,Dan JIANG1,Bo ZHANG1,2()
1.Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, Shandong, China
 全文: PDF(5600 KB)   HTML
摘要:

桃果实在采后贮藏物流过程中易受到果生链核盘菌(Monilinia fructicola)的侵染,导致褐腐病发生和果实品质劣变,有关的挥发性有机化合物(volatile organic compounds, VOCs)对褐腐病的调控效果尚不清楚。本研究分析了成熟桃果实中主要VOCs对果生链核盘菌的抑菌效果,结果表明,香芹酚、反-2-己烯醛等12种VOCs可以显著抑制病原菌在培养基上的生长。进一步开展上述12种VOCs对桃果实采后褐腐病的调控效应研究,结果表明,采用VOCs熏蒸处理可以有效抑制果生链核盘菌的生长,延缓褐腐病发生,其中挥发性醛类物质对果实品质的保持效果较好。采用25 μL/L反-2-己烯醛熏蒸处理可以显著抑制果生链核盘菌生长,减轻褐腐病症状,同时不影响果实外观、乙烯释放速率、硬度、总可溶性固形物含量和感官品质指标,有效维持桃果实在采后贮藏过程中的商品性。综上所述,反-2-己烯醛具有开发为植物源抑菌剂的潜力,可为桃果实供应链提供品质保障。

关键词: 挥发性有机化合物抑菌活性桃果实褐腐病果生链核盘菌    
Abstract:

Peach fruit is susceptible to Monilinia fructicola during storage and logistics, leading to occurrence of brown rot and fruit quality deterioration. However, the regulatory effects of volatile organic compounds (VOCs) on brown rot remain unclear. This study analyzed the antifungal effects of major VOCs in ripe peach fruit on M. fructicola. The results showed that 12 VOCs involving carvacrol and (E)-2-hexenal were identified to have significant inhibitory effects on the growth of M. fructicola on media. Further research was conducted on the regulatory effects of 12 VOCs on postharvest brown rot of peach fruit. The results showed that the fumigation treatment with VOCs could effectively inhibit the growth of M. fructicola and delay the occurrence of brown rot. Among them, volatile aldehydes exhibited positive effects on maintaining fruit quality. Fumigation with 25 μL/L (E)-2-hexenal significantly inhibited the growth of M. fructicola and reduced brown rot symptoms in peach fruit. Meanwhile, the fruit appearance, ethylene release rate, hardness, total soluble solid content and sensory quality indicators were not affected, therefore maintaining the merchant ability of peach fruit during the postharvest storage. In summary, (E)-2-hexenal has the potential to be developed as a plant-based fungicide, offering quality assurance for the peach fruit supply chain.

Key words: volatile organic compounds    antifungal activity    peach fruit    brown rot    Monilinia fructicola
收稿日期: 2023-03-01 出版日期: 2024-03-01
CLC:  TS255.3  
基金资助: 国家重点研发计划项目(2022YFD2100101);浙江大学山东(临沂)现代农业研究院服务地方经济发展项目(ZDNY-2021-FWLY01008)
通讯作者: 张波     E-mail: zh-li@zju.edu.cn;bozhang@zju.edu.cn
作者简介: 李志昊(https://orcid.org/0009-0001-4082-1108),E-mail:zh-li@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李志昊
林斯茵
高颖
杨灿
蒋丹
张波

引用本文:

李志昊,林斯茵,高颖,杨灿,蒋丹,张波. 挥发性有机化合物对桃果实采后褐腐病控制及感官品质的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 75-85.

Zhihao LI,Siyin LIN,Ying GAO,Can YANG,Dan JIANG,Bo ZHANG. Effects of volatile organic compounds on postharvest brown rot control and sensory quality of peach fruit. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 75-85.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.03.011        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/75

图1  1 000 μL/L VOCs对果生链核盘菌的体外抑菌效果CK:0.9%生理盐水(下同);1:芳樟醇;2:柠檬烯;3:香芹酚;4:己醇;5:反-2-己烯醇;6:反-3-己烯醇;7:顺-3-己烯醇;8:辛醇;9:己醛;10:反-2-己烯醛;11:壬醛;12:反-2-壬烯醛;13:乙酸己酯;14:γ-己内酯;15:γ-癸内酯。
VOCs

菌落直径

Colony diameter/

mm

抑制率

Inhibition

rate/%

香芹酚 Carvacrol5.00±0.00100.00±0.00
辛醇 Octanol5.00±0.00100.00±0.00
反-2-壬烯醛 (E)-2-nonenal5.00±0.00100.00±0.00
壬醛 Nonanal5.00±0.00100.00±0.00
反-2-己烯醛 (E)-2-hexenal5.00±0.00100.00±0.00
芳樟醇 Linalool5.00±0.00100.00±0.00
己醛 Hexanal5.00±0.00100.00±0.00
乙酸己酯 Hexyl acetate5.00±0.00100.00±0.00
己醇 Hexanol5.00±0.00100.00±0.00
反-2-己烯醇 (E)-2-hexenol5.00±0.00100.00±0.00
反-3-己烯醇 (E)-3-hexenol5.00±0.00100.00±0.00
顺-3-己烯醇 (Z)-3-hexenol5.00±0.00100.00±0.00
柠檬烯 Limonene7.24±1.5794.60±3.80
γ-己内酯 γ-caprolactone24.03±5.7654.04±13.92
γ-癸内酯 γ-decalactone28.94±9.6142.20±23.20
表1  1 000 μL/L VOCs对果生链核盘菌菌丝的抑制效果
VOCsEC50/(μL/L)R2
香芹酚 Carvacrol3.500.98
辛醇 Octanol16.010.99
反-2-壬烯醛 (E)-2-nonenal17.300.99
壬醛 Nonanal17.430.97
反-2-己烯醛 (E)-2-hexenal20.860.98
芳樟醇 Linalool31.230.97
己醛 Hexanal54.340.94
乙酸己酯 Hexyl acetate77.440.91
己醇 Hexanol98.220.97
反-2-己烯醇 (E)-2-hexenol154.701.00
反-3-己烯醇 (E)-3-hexenol164.500.98
顺-3-己烯醇 (Z)-3-hexenol227.200.98
表2  VOCs抑制果生链核盘菌生长的EC50值
图2  VOCs熏蒸处理对采后贮藏桃果实褐腐病的影响
图3  VOCs熏蒸处理对采后贮藏桃果实上果生链核盘菌菌斑直径的影响图中不同小写字母表示相同时间下不同浓度间在P<0.05水平差异有统计学意义。
图4  25 μL/L VOCs对采后贮藏桃果实褐腐病的影响A.接种果生链核盘菌的桃果实;B.菌斑直径。图中不同小写字母表示相同时间下不同处理间在P<0.05水平差异有统计学意义。
图5  25 μL/L VOCs对采后贮藏桃果实外观品质的影响
图6  25 μL/L VOCs对采后贮藏桃果实品质指标的影响A.乙烯释放速率;B.硬度;C. TSS含量;D.基于电子鼻的感官品质分析。
1 DE MICCOLIS ANGELINI R M, LANDI L, RAGUSEO C, et al. Tracking of diversity and evolution in the brown rot fungi Monilinia fructicola, Monilinia fructigena,and Monilinia laxa [J]. Frontiers in Microbiology, 2022, 13: 854852. DOI: 10.3389/fmicb.2022.854852
doi: 10.3389/fmicb.2022.854852
2 BAGGIO J S, HAU B, AMORIM L. Spatiotemporal analyses of rhizopus rot progress in peach fruit inoculated with Rhizopus stolonifer [J]. Plant Pathology, 2017, 66(9): 1452-1462. DOI: 10.1111/ppa.12691
doi: 10.1111/ppa.12691
3 FAN L, WEI Y Y, CHEN Y, et al. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches[J]. Food Chemistry, 2023, 403: 134419. DOI: 10.1016/j.foodchem.2022.134419
doi: 10.1016/j.foodchem.2022.134419
4 尉冬梅,徐军,董丰收,等.大久保桃扩展青霉病斑外延组织中青霉菌及展青霉素的扩散范围检测[J].农产品质量与安全,2016(4):35-39. DOI:10.3969/j.issn.1674-8255.2016.04.010
WEI D M, XU J, DONG F S, et al. Detection of the spread range of Penicillium and patulinin the extension tissue of Penicillium expansum spot in Okubo peach fruit[J]. Quality and Safety of Agro-Products, 2016(4): 35-39. (in Chinese)
doi: 10.3969/j.issn.1674-8255.2016.04.010
5 霍鹏升.桃黑斑病病原鉴定、生物学特性及化学防治研究[D].扬州:扬州大学,2016.
HUO P S. Pathogen, biological characteristics and chemical control of peach black spot[D]. Yangzhou: Yangzhou University, 2016. (in Chinese with English abstract)
6 苟攀宁,薛应钰,陈军宏,等.油桃酸腐病病菌的分离鉴定及其生物学特性[J].甘肃农业大学学报,2021,56(6):97-103. DOI:10.13432/j.cnki.jgsau.2021.06.013
GOU P N, XUE Y Y, CHEN J H, et al. Isolation and identification of nectarine acid rot disease and its biological characteristics[J]. Journal of Gansu Agricultural University, 2021, 56(6): 97-103. (in Chinese with English abstract)
doi: 10.13432/j.cnki.jgsau.2021.06.013
7 BRAVO CADENA M, PRESTON G M, VAN DER HOORN R A L, et al. Species-specific antimicrobial activity of essential oils and enhancement by encapsulation in mesoporous silica nanoparticles[J]. Industrial Crops and Products, 2018, 122: 582-590. DOI: 10.1016/j.indcrop.2018.05.081
doi: 10.1016/j.indcrop.2018.05.081
8 EDUARDO I, CHIETERA G, BASSI D, et al. Identification of key odor volatile compounds in the essential oil of nine peach accessions[J]. Journal of the Science of Food and Agriculture, 2010, 90(7): 1146-1154. DOI: 10.1002/jsfa.3932
doi: 10.1002/jsfa.3932
9 XU Y Q, TONG Z C, ZHANG X, et al. Unveiling the mechanisms for the plant volatile organic compound linalool to control gray mold on strawberry fruits[J]. Journal of Agricultural and Food Chemistry, 2019, 67(33): 9265-9276. DOI: 10.1021/acs.jafc.9b03103
doi: 10.1021/acs.jafc.9b03103
10 SONG J, HILDEBRAND P D, FAN L H, et al. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay[J]. Journal of Food Science, 2007, 72(4): M108-M112. DOI: 10.1111/j.1750-3841.2007.00341.x
doi: 10.1111/j.1750-3841.2007.00341.x
11 ZHANG J H, SUN H L, CHEN S Y, et al. Anti-fungal activity, mechanism studies on α-phellandrene and nonanal against Penicillium cyclopium [J]. Botanical Studies, 2017, 58: 13. DOI: 10.1186/s40529-017-0168-8
doi: 10.1186/s40529-017-0168-8
12 SANTORO K, MAGHENZANI M, CHIABRANDO V, et al. Thyme and savory essential oil vapor treatments control brown rot and improve the storage quality of peaches and nectarines, but could favor gray mold[J]. Foods, 2018, 7(1): 7. DOI: 10.3390/foods7010007
doi: 10.3390/foods7010007
13 WANG X Z, HUANG M M, PENG Y, et al. Antifungal activity of 1-octen-3-ol against Monilinia fructicola and its ability in enhancing disease resistance of peach fruit[J]. Food Control, 2022, 135: 108804. DOI: 10.1016/j.foodcont.2021.108804
doi: 10.1016/j.foodcont.2021.108804
14 NERI F, MARI M, BRIGATI S, et al. Fungicidal activity of plant volatile compounds for controlling Monilinia laxa in stone fruit[J]. Plant Disease, 2007, 91(1): 30-35. DOI: 10.1094/PD-91-0030
doi: 10.1094/PD-91-0030
15 ZHANG B, SHEN J Y, WEI W W, et al. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening[J]. Journal of Agricultural and Food Chemistry, 2010, 58(10): 6157-6165. DOI: 10.1021/jf100172e
doi: 10.1021/jf100172e
16 SILVA E R, DE CARVALHO F O, TEIXEIRA L G B, et al. Pharmacological effects of carvacrol in in vitro studies: a review[J]. Current Pharmaceutical Design, 2018, 24(29): 3454-3465. DOI: 10.2174/1381612824666181003123400
doi: 10.2174/1381612824666181003123400
17 XIN R, LIU X H, WEI C Y, et al. E-nose and GC-MS reveal a difference in the volatile profiles of white- and red-fleshed peach fruit[J]. Sensors, 2018, 18(3): 765. DOI: 10.3390/s18030765
doi: 10.3390/s18030765
18 冯武.植物精油对果蔬采后病害的防治及其防治机理研究[D].杭州:浙江大学,2006.
FENG W. The study of control and mechanism of action on postharvest diseases of fruit and vegetables by essential oils[D]. Hangzhou: Zhejiang University, 2006. (in Chinese with English abstract)
19 KRETSCHMER M, DAMOO D, SUN S, et al. Organic acids and glucose prime late-stage fungal biotrophy in maize[J]. Science, 2022, 376(6598): 1187-1191. DOI: 10.1126/science.abo2401
doi: 10.1126/science.abo2401
20 何敏.48种精油单组分的抗真菌作用规律及其对猕猴桃采后病害的控制效果[D].武汉:华中农业大学,2022.
HE M. Antifungal action of 48 compounds in essential oils and its control on postharvest disease of kiwifruit[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract)
21 李娟.解淀粉芽孢杆菌TJ抑菌物质的研究[D].天津:天津农学院,2015. DOI:10.1016/s1006-8104(16)30010-1
LI J. Study on the antifungal substance of Bacillus amyloli-quefaciens [D]. Tianjin: Tianjin Agricultural University, 2015. (in Chinese with English abstract)
doi: 10.1016/s1006-8104(16)30010-1
22 CHO M J, BUESCHER R W, JOHNSON M, et al. Inactivation of pathogenic bacteria by cucumber volatiles (E, Z)-2, 6-nonadienal and (E)-2-nonenal[J]. Journal of Food Protection, 2004, 67(5): 1014-1016. DOI: 10.4315/0362-028x-67.5.1014
doi: 10.4315/0362-028x-67.5.1014
23 MATSUI K, MINAMI A, HORNUNG E, et al. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber[J]. Phytochemistry, 2006, 67(7): 649-657. DOI: 10.1016/j.phytochem.2006.01.006
doi: 10.1016/j.phytochem.2006.01.006
24 刘颜颜.夏威夷果贮藏异味的产生及其防控技术研究[D].无锡:江南大学,2022. DOI:10.59528/ms.jdssi2023.1227a11
LIU Y Y. The production and prevention of macadamia off-flavor during storage[D]. Wuxi: Jiangnan University, 2022. (in Chinese with English abstract)
doi: 10.59528/ms.jdssi2023.1227a11
25 SONG G, DU S L, SUN H L, et al. Antifungal mechanism of (E)-2-hexenal against Botrytis cinerea growth revealed by transcriptome analysis[J]. Frontiers in Microbiology, 2022, 13: 951751. DOI:10.3389/fmicb.2022.951751
doi: 10.3389/fmicb.2022.951751
26 WANG X H, FU M R, QU X Q, et al. (E)-2-hexenal-based coating induced acquired resistance in apple and its antifungal effects against Penicillium expansum [J]. LWT-Food Science and Technology, 2022, 163: 113536. DOI: 10.1016/j.lwt.2022.113536
doi: 10.1016/j.lwt.2022.113536
27 朱莉莉.植物源产物牛蒡低聚果糖(BFO)和反-2-己烯醛(E2H)在克瑞森无核葡萄保鲜中的作用机制[D].南昌:江西农业大学,2021.
ZHU L L. The fresh-keeping mechanisms of plant-derived products burdock fructooligosaccharide (BFO) and trans-2-hexenal (E2H) on ‘Crimson seedless’ grape (Vitis vinifera L.)[D]. Nanchang: Jiangxi Agricultural University, 2021. (in Chinese with English abstract)
[1] 水燕,管政兵,叶俊贤,史永红,刘国锋,徐增洪. 克氏原螯虾i-型溶菌酶在巴斯德毕赤酵母中的高效胞外表达及其抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 526-532.
[2] 卢海燕, 徐重新, 张宵, 梁颖, 刘贤金. 柠檬烯对食源性病原菌的抑菌活性(英文)[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 306-312.
[3] 庄远红,刘静娜,黄家福,林娇芬,潘裕添. 食用菌壳聚糖卡波姆复合凝胶的稳定性及其抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2015, 41(2): 147-152.
[4] 张希, 杨明, 宋飞, 张辉*, 冯凤琴*. 脂肪酸及其衍生物的抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 155-160.
[5] 王春荣, 方程吉, 余庆青, 蒋鹏, 田薇*. 菊米超临界CO2萃取物的气相色谱质谱分析及其抑菌活性[J]. 浙江大学学报(农业与生命科学版), 2013, 39(2): 167-172.
[6] 赵亦静, 倪密, 诺林, 王学德*. 人工合成抗菌肽对棉花黄萎病菌的抑菌效果[J]. 浙江大学学报(农业与生命科学版), 2013, 39(1): 11-.
[7] 张武岗, 冯俊涛, 方香玲, 薛泉宏, 张兴. 放线菌19G-317菌株的鉴定及其抑菌活性研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 243-248.
[8] 易晓华,冯俊涛,方香玲,李玉平,张 兴. 除虫菊内生拟盘多毛孢Y1菌株的生物学特性及其对植物病原菌的抑制作用[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 516-524.
[9] 李肖梁  尹兆正  钱娅  朱志刚  方维焕 . 抗嗜水气单胞菌IgY的提纯及体外抑菌效果研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(4): 503-506.