Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (2): 135-140    DOI: 10.3785/j.issn.1008-9209.2021.10.142
作物科学     
大麦灌浆期干旱胁迫对麦芽主要品质性状的影响
洪叶1,2(),张国平1()
1.浙江大学农业与生物技术学院,杭州 310058
2.扬州市农业技术综合服务中心,江苏 扬州 225001
Influence of drought stress during the grain-filling stage on malt main quality traits of barley
Ye HONG1,2(),Guoping ZHANG1()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Yangzhou Agricultural Technology Comprehensive Service Center, Yangzhou 225001, Jiangsu, China
 全文: PDF(840 KB)   HTML
摘要:

以麦芽品质和耐旱性差异很大,而抽穗与成熟时间基本相同的栽培品种浙大9号和西藏野生大麦XZ166为供试材料,研究在灌浆期不同时间干旱胁迫处理对2个基因型大麦麦芽主要品质性状的影响。结果表明:干旱胁迫增加了麦芽蛋白质含量、库尔巴哈值和α-氨基氮含量,降低了麦芽浸出率和麦芽汁黏度,且浙大9号的变化幅度大于XZ166;灌浆前期(开花后7 d)干旱胁迫对浙大9号的影响显著大于XZ166,而灌浆中期(开花后14 d)干旱胁迫对XZ166影响更明显。因此,灌浆期不同时间干旱胁迫对麦芽品质有显著影响,在啤酒大麦品质育种和优质生产上应该特别关注。在实际生产中应根据当地干旱发生的历程,选用适宜的大麦品种,尽量使其品质形成的关键时期避开逆境胁迫。

关键词: 干旱胁迫麦芽品质蛋白质含量麦芽浸出率酶活性大麦    
Abstract:

This experiment was carried out to investigate the effects of drought stress treatments during the grain-filling stage on the malt main qualities of the two barley genotypes, Zheda No. 9 (ZU9) (a cultivar) and XZ166 (a wild Tibetan barley accession), which differed greatly in the drought tolerance and malt quality, and had the similar heading and maturing stages. The results showed that drought stress significantly increased the malt protein and α-amino nitrogen contents, and the Kolbach index, and reduced malt extract rate and viscosity, with ZU9 being more largely affected than XZ166. Drought treatment at the early grain-filling stage (7 d after anthesis) caused much larger changes of all the examined malt qualities in ZU9 than in XZ166, while for the drought treatment at the middle grain-filling stage (14 d after anthesis), the changes of these quality traits were much larger in XZ166 than in ZU9. It may be concluded that drought stress occurred during the grain-filling stage had a great impact on malt quality, which should be addressed in breeding and agronomic management of malt. In the actual production, appropriate varieties should be selected according to the occurrence time of the drought, so as to avoid the drought stress during the critical period of quality formation.

Key words: drought stress    malt quality    protein content    malt extract rate    enzyme activity    barley
收稿日期: 2021-10-14 出版日期: 2022-04-29
CLC:  S 512.3  
基金资助: 国家自然科学基金(31620103912)
通讯作者: 张国平     E-mail: hongy@zju.edu.cn;Zhanggp@zju.edu.cn
作者简介: 洪叶(https://orcid.org/0000-0002-2201-4687),E-mail:hongy@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
洪叶
张国平

引用本文:

洪叶,张国平. 大麦灌浆期干旱胁迫对麦芽主要品质性状的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 135-140.

Ye HONG,Guoping ZHANG. Influence of drought stress during the grain-filling stage on malt main quality traits of barley. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 135-140.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.10.142        https://www.zjujournals.com/agr/CN/Y2022/V48/I2/135

图1  花后干旱胁迫处理对2个基因型大麦麦芽蛋白质含量和浸出率的影响CK:对照组;M1:花后前期干旱组;M2:花后中期干旱组;M3:花后较长时间干旱组。短栅上不同小写字母表示同种大麦品种在不同处理间在P<0.05水平差异有统计学意义。下同。
图2  花后干旱胁迫处理对2个基因型大麦麦芽糖化力和库尔巴哈值的影响
图3  花后干旱胁迫处理对2个基因型大麦麦芽汁黏度和 α -氨基氮含量的影响
1 中国酒业协会啤酒分会,啤酒原料专业委员会.中国酒业协会啤酒分会第四届理事会、啤酒原料专业委员会第二届理事会工作报告[R].中外酒业?啤酒科技,2020(121):1-9.
Beer Branch of China Alcoholic Drinks Association. Professional Committee of Beer Raw Materials. Report on the Work of the 4th Council of the Beer Branch of China Alcoholic Drinks Association and the 2nd Council of Professional Committee of Beer Raw Materials [R]. Global Alcinfo, 2020(121): 1-9. (in Chinese)
2 LI C D, CAKIR M, LANCE R. Genetic improvement of malting quality through conventional breeding and marker-assisted selection[C]//ZHANG G P, LI C D. Genetics and Improvement of Barley Malt Quality. Berlin, German: Springer, 2010: 260-292.
3 BOHA?ENKO I, PSOTA V, HARTMANN J, et al. Combined effect of high temperature and drought on yield and malting quality of barley[J]. Czech Journal of Food Sciences, 2021, 39(1): 17-22. DOI:10.17221/146/2019-CJFS
doi: 10.17221/146/2019-CJFS
4 NEUMANN P M. Coping mechanisms for crop plants in drought-prone environments[J]. Annals of Botany, 2008, 101(7): 901-907. DOI:10.1093/aob/mcn018
doi: 10.1093/aob/mcn018
5 WU X J, CHEN X, ZENG F R, et al. The genotypic difference in the effect of water stress after anthesis on the malt quality parameters in barley[J]. Journal of Cereal Science, 2015, 65: 209-214. DOI:10.1016/j.jcs.2015.07.012
doi: 10.1016/j.jcs.2015.07.012
6 MORGAN A G, RIGGS T J. Effects of drought on yield and on grain and malt characters in spring barley[J]. Journal of the Science of Food and Agriculture, 1981, 32: 339-346. DOI:10.1002/jsfa.2740320405
doi: 10.1002/jsfa.2740320405
7 QI J C, CHEN J X, WANG J M, et al. Protein and hordein fraction content in barley seeds as affected by sowing date and their relations to malting quality[J]. Journal of Zhejiang University (SCIENCE B), 2005, 6(11): 1069-1075. DOI:10.1631/jzus.2005.B1069
doi: 10.1631/jzus.2005.B1069
8 CELUS I, BRIJS K, DELCOUR J A. The effects of malting and mashing on barley protein extractability[J]. Journal of Cereal Science, 2006, 44: 203-211. DOI:10.1016/j.jcs.2006.06.003
doi: 10.1016/j.jcs.2006.06.003
9 FAROOQ M, HUSSAIN M, SIDDIQUE K H M. Drought stress in wheat during flowering and grain-filling periods[J]. Critical Reviews in Plant Sciences, 2014, 33(4): 331-349. DOI:10.1080/07352689.2014.875291
doi: 10.1080/07352689.2014.875291
10 ALGHABARI F, IHSAN M Z. Effects of drought stress on growth, grain filling duration, yield and quality attributes of barley (Hordeum vulgare L.)[J]. Bangladesh Journal of Botany, 2018, 47(3): 421-428. DOI:10.3329/bjb.v47i3.38679
doi: 10.3329/bjb.v47i3.38679
11 MAHALINGAM R. Phenotypic, physiological and malt quality analyses of US barley varieties subjected to short periods of heat and drought stress[J]. Journal of Cereal Science, 2017, 76: 199-205. DOI:10.1016/j.jcs.2017.06.007
doi: 10.1016/j.jcs.2017.06.007
12 BERA S, SABIKHI L, SINGH A K. Assessment of malting characteristics of different Indian barley cultivars[J]. Journal of Food Science and Technology, 2018, 55(2): 704-711. DOI:10.1007/s13197-017-2981-1
doi: 10.1007/s13197-017-2981-1
13 CIMINI A, MORESI M. Beer clarification using ceramic tubular membranes[J]. Food and Bioprocess Technology, 2014, 7(9): 2694-2710. DOI:10.1007/s11947-014-1338-2
doi: 10.1007/s11947-014-1338-2
14 FERNANDEZ-FIGARES I, MARINETTO J, ROYO C, et al. Amino-acid composition and protein and carbohydrate accumulation in the grain of triticale grown under terminal water stress simulated by a senescing agent[J]. Journal of Cereal Science, 2000, 32(3): 249-258. DOI:10.1006/jcrs.2000.0329
doi: 10.1006/jcrs.2000.0329
15 WU X J, CAI K F, ZHANG G P, et al. Metabolite profiling of barley grains subjected to water stress: to explain the genotypic difference in drought-induced impacts on malting quality[J]. Frontiers in Plant Science, 2017, 8: 1547. DOI:10.3389/fpls.2017.01547
doi: 10.3389/fpls.2017.01547
16 HONG Y, NI S J, ZHANG G P. Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress[J]. Plant Physiology and Biochemistry, 2020, 152: 1-11. DOI:10.1016/j.plaphy.2020.04.029
doi: 10.1016/j.plaphy.2020.04.029
17 汪军妹.啤酒大麦主要品质性状的品种和环境变异研究[D].杭州:浙江大学,2003.
WANG J M. Study on cultivars and environmental variation in qualities of malting barley[D]. Hangzhou: Zhejiang University, 2003. (in Chinese with English abstract )
18 PALMER G H. Influence of endosperm structure on extract development[J]. Proceedings of the American Society of Brewing Chemists, 1975, 33(4): 174-180.
19 NAM K H, KIM D Y, SHIN H J, et al. Drought stress-induced compositional changes in tolerant transgenic rice and its wild type[J]. Food Chemistry, 2014, 153(15): 145-150. DOI:10.1016/j.foodchem.2013.12.051
doi: 10.1016/j.foodchem.2013.12.051
20 GOUS P W, GILBERT R G, FOX G P. Drought-proofing barley (Hordeum vulgare) and its impact on grain quality: a review[J]. Journal of the Institute of Brewing, 2015, 121(1): 19-27. DOI:10.1002/jib.187
doi: 10.1002/jib.187
21 JONES C A, JACOBSEN J S, WRAITH J M. Response of malt barley to phosphorus fertilization under drought conditions[J]. Journal of Plant Nutrition, 2005, 28(9): 1605-1617. DOI:10.1080/01904160500203531
doi: 10.1080/01904160500203531
22 AHMED I M, CAO F B, HAN Y, et al. Differential changes in grain ultrastructure, amylase, protein and amino acid profiles between Tibetan wild and cultivated barleys under drought and salinity alone and combined stress[J]. Food Chemistry, 2013, 141(3): 2743-2750. DOI:10.1016/j.foodchem.2013.05.101
doi: 10.1016/j.foodchem.2013.05.101
23 MOLINA-CANO J L, POLO J P, SOPENA A, et al. Mechanisms of malt extract development in barleys from different European regions Ⅱ. Effect of barley hordein fractions on malt extract yield[J]. Journal of the Institute of Brewing, 2000, 106(2): 117-123. DOI:10.1002/j.2050-0416.2000.tb00048.x
doi: 10.1002/j.2050-0416.2000.tb00048.x
24 ZHANG G P, CHEN J X, WANG J M, et al. Cultivar and environmental effects on (1→3, 1→4)-β-D-glucan and protein content in malting barley[J]. Journal of Cereal Science, 2001, 34(3): 295-301. DOI:10.1006/jcrs.2001.0414
doi: 10.1006/jcrs.2001.0414
[1] 周认,蔡宇,林恬逸,柴明良. 模拟干旱胁迫下褪黑素和表油菜素内酯对沟叶结缕草长期继代培养愈伤组织再生的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 36-44.
[2] 黄贝,王鹏,温明霞,吴韶辉,徐建国. 不同程度干旱对温州蜜柑树势和成花生理的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 557-565.
[3] 闫静,王伟科,袁卫东,陆娜,宋吉玲,周祖法. 温度对秀珍菇生长发育及胞外酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 161-167.
[4] Elmon CHINDUDZI,苏帮荣,郭伊,钟镇涛,Jane MAKONI,祝水金,陈进红. Heat tolerance evaluation of transgenic cotton germplasms with insect resistance and herbicide tolerance[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 647-656.
[5] 王玉珍,马瑶,陈琦,马红燕,杨晶,刘宸,李峻志,马小魁. 单色光对桑黄生长及其抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 542-549.
[6] 郑好,吕夏晨,谭赛琼,路雪丽,张弦,张晓勤,薛大伟. 干旱胁迫下大麦蜡质缺失突变体的生理生化指标及蜡质基因表达[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 8-13.
[7] 邵珊璐, 杨丽芝, 陶晨悦, 何安国, 应叶青. 多效唑对毛竹实生苗抗旱性的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 565-572.
[8] 潘伟槐, 潘建伟, 寿建昕, 郭天荣, 莫亿伟. 铝毒对不同耐铝性大麦品种初生根的影响差异[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 335-342.
[9] 王一航,赵路遥,王国明,朱爱意. 舟山新木姜子幼苗对干旱胁迫的生理响应[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 543-551.
[10] 李戌清,张雅,田忠玲,吴根良. 茄子连作与轮作土壤养分、酶活性及微生物群落结构差异分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(5): 561-569.
[11] 王舒甜,王金平,张金池,岳健敏. 油菜素内酯对盐胁迫下香樟幼苗叶片抗氧化酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 476-482.
[12] 杨静,马如慧,杨智茜,徐爽,李铎,陈兰明. 2株乳酸菌的生长和潜在益生菌特性[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 239-246.
[13] 刘于, 王伏林, 刘仁虎. 甘蓝型油菜黄籽突变对含油量和蛋白质含量的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(1): 37-44.
[14] 辛福梅,贾黎明,杨小林,臧建成. 干旱胁迫对拉萨半干旱河谷主要灌木树种耗水及光合的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 617-.
[15] 辛福梅,杨小林,赵垦田,罗桑卓玛. 干旱胁迫对拉萨半干旱河谷主要乔木树种幼树耗水及光合特性的影响[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 199-208.