Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 755-764    DOI: 10.3785/j.issn.1008-9209.2022.07.182
综述     
益生菌帮助动物抵御流感的机制研究进展
韩美晴1(),王迪1,彭先启1,李艳1,2()
1.浙江大学动物科学学院动物预防医学研究所/浙江省动物预防医学重点实验室, 浙江 杭州 310058
2.浙江大学海南研究院, 海南 三亚 572025
Research advances in the mechanisms of protecting animals against influenza by probiotics
Meiqing HAN1(),Di WANG1,Xianqi PENG1,Yan LI1,2()
1.Institute of Preventive Veterinary Medicine/Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
 全文: PDF(2174 KB)   HTML
摘要:

流感是一种重要的人畜共患病,高致病性禽流感不仅给我国养殖业带来巨大损失,还严重威胁公共卫生安全。流感病毒能够在猪体内重组并跨越物种屏障进行传播,这给预防流感带来巨大挑战。由于流感病毒的变异速度快,流行的病毒株和疫苗株之间的差异会降低疫苗的效力,因此增强机体对流感病毒的抵抗力显得尤为重要。益生菌具有调节肠道微生物平衡、促进机体健康的作用,对动物机体抵抗流感病毒是有益的。本文综述了益生菌在动物体内抗流感病毒的作用机制,阐明了益生菌可以通过平衡动物肠道菌群组成、调节机体黏膜屏障功能、增强或抑制Toll样受体相关分子信号通路等方式直接或间接干扰病毒的侵袭,为了解不同菌种发挥抗流感的相应机制及开发更有效的抗流感策略提供了科学依据。

关键词: 流感病毒益生菌免疫“肠-肺轴”    
Abstract:

Influenza is an important zoonotic disease. The highly pathogenic avian influenza not only brings enormous losses to China’s livestock breeding industry but also seriously threatens the safety of public health. The ability of influenza viruses to recombine in swine and spread across species barriers poses significant challenges for influenza prevention. Due to the rapid mutation of influenza viruses, the differences between prevalent viruses and vaccine strains reduce the vaccine efficacy. It is necessary to improve the host’s immunity to influenza viruses. Probiotics regulate the balance of intestinal microbiota and promote body health, which is beneficial for protecting animal against influenza viruses. This paper reviewed the mechanisms of anti-influenza virus action of probiotics in animals. The mechanisms include direct or indirect interference with virus attacks by balancing the composition of intestinal flora, regulating the mucosal barrier function of body, and enhancing or suppressing Toll-like receptor-related molecular signaling pathways. This study provides scientific evidence for understanding the mechanisms by which different strains of probiotics combat influenza and for developing more effective anti-influenza strategies.

Key words: influenza virus    probiotics    immunity    “gut-lung axis”
收稿日期: 2022-07-18 出版日期: 2023-12-25
CLC:  S85  
基金资助: 国家自然科学基金项目(32102620);浙江省自然科学基金项目(LZ22C180004)
通讯作者: 李艳     E-mail: xxhan0818@qq.com;yanli3@zju.edu.cn
作者简介: 韩美晴(https://orcid.org/0000-0002-3849-1322),E-mail:xxhan0818@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩美晴
王迪
彭先启
李艳

引用本文:

韩美晴,王迪,彭先启,李艳. 益生菌帮助动物抵御流感的机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 755-764.

Meiqing HAN,Di WANG,Xianqi PENG,Yan LI. Research advances in the mechanisms of protecting animals against influenza by probiotics. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 755-764.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.07.182        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/755

图1  病毒性呼吸道感染下的“肠-肺轴”工作模式本图使用BioRender网站(https://www.biorender.com/)创建,图2同。
图2  益生菌在抵御流感病毒感染中可能的作用机制示意图
1 NODA T, SAGARA H, YEN A, et al. Architecture of ribonucleoprotein complexes in influenza A virus particles[J]. Nature, 2006, 439(7075): 490-492. DOI: 10.1038/nature04378
doi: 10.1038/nature04378
2 SHI Y, WU Y, ZHANG W, et al. Enabling the ‘host jump’: structural determinants of receptor-binding specificity in influenza A viruses[J]. Nature Reviews Microbiology, 2014, 12(12): 822-831. DOI: 10.1038/nrmicro3362
doi: 10.1038/nrmicro3362
3 KRAMMER F, SMITH G J D, FOUCHIER R A M, et al. Influenza[J]. Nature Reviews Disease Primers, 2018, 4: 3. DOI: 10.1038/s41572-018-0002-y
doi: 10.1038/s41572-018-0002-y
4 王大燕,舒跃龙.流感大流行的历史及思考[J].中国科学:生命科学,2018,48(12):1247-1251. DOI:10.1360/N052018-00205
WANG D Y, SHU Y L. History and reflection of pandemic influenza[J]. Scientia Sinica (Vitae), 2018, 48(12): 1247-1251. (in Chinese with English abstract)
doi: 10.1360/N052018-00205
5 杨帅,朱闻斐,舒跃龙.猪流感病毒概述[J].病毒学报,2013,29(3):330-336. DOI:10.13242/j.cnki.bingduxuebao.002395
YANG S, ZHU W F, SHU Y L. An overview on swine influenza viruses[J]. Chinese Journal of Virology, 2013, 29(3): 330-336. (in Chinese with English abstract)
doi: 10.13242/j.cnki.bingduxuebao.002395
6 KIM H, WEBSTER R G, WEBBY R J. Influenza virus: dealing with a drifting and shifting pathogen[J]. Viral Immunology, 2018, 31(2): 174-183. DOI: 10.1089/vim.2017.0141
doi: 10.1089/vim.2017.0141
7 CHANG H P, PENG L, CHEN L, et al. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs[J]. Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2018, 19(5): 409-414. DOI: 10.1631/jzus.b1700374
doi: 10.1631/jzus.b1700374
8 SUN H L, LI F T, LIU Q Z, et al. Mink is a highly susceptible host species to circulating human and avian influenza viruses[J]. Emerging Microbes & Infections, 2021, 10(1): 472-480. DOI: 10.1080/22221751.2021.1899058
doi: 10.1080/22221751.2021.1899058
9 OLSEN S J, WINN A K, BUDD A P, et al. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic—United States, 2020—2021[J]. American Journal of Transplantation, 2021, 21(10): 3481-3486. DOI: 10.1111/ajt.16049
doi: 10.1111/ajt.16049
10 WEBSTER R G, GOVORKOVA E A. Continuing challenges in influenza[J]. Annals of the New York Academy of Sciences, 2014, 1323(1): 115-139. DOI: 10.1111/nyas.12462
doi: 10.1111/nyas.12462
11 RODRIGUEZ L, NOGALES A, MARTÍNEZ-SOBRIDO L. Influenza A virus studies in a mouse model of infection[J]. Journal of Visualized Experiments, 2017(127): 55898. DOI: 10.3791/55898
doi: 10.3791/55898
12 FARRUKEE R, HURT A C. Antiviral drugs for the treatment and prevention of influenza[J]. Current Treatment Options in Infectious Diseases, 2017, 9(3): 318-332. DOI: 10.1007/s40506-017-0129-5
doi: 10.1007/s40506-017-0129-5
13 SÁNCHEZ B, DELGADO S, BLANCO-MÍGUEZ A, et al. Probiotics, gut microbiota, and their influence on host health and disease[J]. Molecular Nutrition & Food Research, 2017, 61(1): 1600240. DOI: 10.1002/mnfr.201600240
doi: 10.1002/mnfr.201600240
14 LILLY D M, STILLWELL R H. Probiotics: growth-promoting factors produced by microorganisms[J]. Science, 1965, 147(3659): 747-748.
15 Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO). Guidelines for the evaluation of probiotics in food[C]//Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada: FAO/WHO, 2002.
16 RUSSELL S L, GOLD M J, WILLING B P, et al. Perinatal antibiotic treatment affects murine microbiota, immune responses and allergic asthma[J]. Gut Microbes, 2013, 4(2): 158-164. DOI: 10.4161/gmic.23567
doi: 10.4161/gmic.23567
17 BAUD D, DIMOPOULOU AGRI V, GIBSON G R, et al. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic[J]. Frontiers in Public Health, 2020, 8: 186. DOI: 10.3389/fpubh.2020.00186
doi: 10.3389/fpubh.2020.00186
18 TAPIOVAARA L, PITKARANTA A, KORPELA R. Probiotics and upper respiratory tract—a review[J]. Pediatric Infectious Diseases Open, 2016, 1(3): 19. DOI: 10.4172/PIDO.100019
doi: 10.4172/PIDO.100019
19 FANOS V, PINTUS M C, PINTUS R, et al. Lung microbiota in the acute respiratory disease: from coronavirus to meta-bolomics[J] Journal of Pediatric and Neonatal Individualized Medicine, 2020, 9(1): e090139. DOI: 10.7363/090139
doi: 10.7363/090139
20 SENCIO V, MACHADO M G, TROTTEIN F. The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes[J]. Mucosal Immunology, 2021, 14(2): 296-304. DOI: 10.1038/s41385-020-00361-8
doi: 10.1038/s41385-020-00361-8
21 DHAR D, MOHANTY A. Gut microbiota and Covid-19-possible link and implications[J]. Virus Research, 2020, 285: 198018. DOI: 10.1016/j.virusres.2020.198018
doi: 10.1016/j.virusres.2020.198018
22 肖锶瑶,张纾难.肠道菌群和呼吸系统疾病相关性的研究进展[J].中国全科医学,2021,24(9):1165-1172. DOI:10.12114/j.issn.1007-9572.2021.00.003
XIAO S Y, ZHANG S N. Recent advances in the relationship between intestinal flora and respiratory diseases[J]. Chinese General Practice, 2021, 24(9): 1165-1172. (in Chinese with English abstract)
doi: 10.12114/j.issn.1007-9572.2021.00.003
23 HARPER A, VIJAYAKUMAR V, OUWEHAND A C, et al. Viral infections, the microbiome, and probiotics[J]. Frontiers in Cellular and Infection Microbiology, 2021, 10: 596166. DOI: 10.3389/fcimb.2020.596166
doi: 10.3389/fcimb.2020.596166
24 ZHANG Q, HU J, FENG J W, et al. Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection[J]. Genome Biology, 2020, 21(1): 99. DOI: 10.1186/s13059-020-02007-1
doi: 10.1186/s13059-020-02007-1
25 LEHTORANTA L, PITKÄRANTA A, KORPELA R. Probiotics in respiratory virus infections[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2014, 33(8): 1289-1302. DOI: 10.1007/s10096-014-2086-y
doi: 10.1007/s10096-014-2086-y
26 SALMINEN S, NYBOM S, MERILUOTO J, et al. Interaction of probiotics and pathogens—benefits to human health?[J]. Current Opinion in Biotechnology, 2010, 21(2): 157-167. DOI: 10.1016/j.copbio.2010.03.016
doi: 10.1016/j.copbio.2010.03.016
27 WANG Z Y, CHAI W D, BURWINKEL M, et al. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro [J]. PLoS ONE, 2013, 8(1): e53043. DOI: 10.1371/journal.pone.0053043
doi: 10.1371/journal.pone.0053043
28 STAROSILA D, RYBALKO S, VARBANETZ L, et al. Anti-influenza activity of a Bacillus subtilis probiotic strain[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(7): e00539-17. DOI: 10.1128/AAC.00539-17
doi: 10.1128/AAC.00539-17
29 MEYERHOFF R R, NIGHOT P K, ALI R A, et al. Characterization of Turkey inducible nitric oxide synthase and identification of its expression in the intestinal epithelium following astrovirus infection[J]. Comparative Immunology, Microbiology and Infectious Diseases, 2012, 35(1): 63-69. DOI: 10.1016/j.cimid.2011.10.002
doi: 10.1016/j.cimid.2011.10.002
30 SERKEDJIEVA J, DANOVA S, IVANOVA I. Antiinfluenza virus activity of a bacteriocin produced by Lactobacillus delbrueckii [J]. Applied Biochemistry and Biotechnology, 2000, 88: 285-298. DOI: 10.1385/ABAB:88:1-3:285
doi: 10.1385/ABAB:88:1-3:285
31 MELANO I, KUO L L, LO Y C, et al. Effects of basic amino acids and their derivatives on SARS-CoV-2 and influenza-A virus infection[J]. Viruses, 2021, 13(7): 1301. DOI: 10.3390/v13071301
doi: 10.3390/v13071301
32 LIU B Y, CHEN X L, ZHOU L, et al. The gut microbiota of bats confers tolerance to influenza virus (H1N1) infection in mice[J]. Transboundary and Emerging Diseases, 2022, 69(5): e1469-e1487. DOI: 10.1111/tbed.14478
doi: 10.1111/tbed.14478
33 SINGH K, RAO A. Probiotics: a potential immunomodulator in COVID-19 infection management[J]. Nutrition Research, 2021, 87: 1-12. DOI: 10.1016/j.nutres.2020.12.014
doi: 10.1016/j.nutres.2020.12.014
34 崔治中,崔保安.兽医免疫学[M].北京:中国农业出版社,2004:19.
CUI Z Z, CUI B A. Veterinary Immunology[M]. Beijing: China Agriculture Press, 2004: 19. (in Chinese)
35 ANTUSHEVICH H. Interplays between inflammasomes and viruses, bacteria (pathogenic and probiotic), yeasts and parasites[J]. Immunology Letters, 2020, 228: 1-14. DOI: 10.1016/j.imlet.2020.09.004
doi: 10.1016/j.imlet.2020.09.004
36 CHIBA Y, KAN S D, NAGATA S, et al. Well-controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic Lactobacillus casei [J]. Immunology, 2010, 130(3): 352-362. DOI: 10.1111/j.1365-2567.2009.03204.x
doi: 10.1111/j.1365-2567.2009.03204.x
37 BELKACEM N, BOURDET-SICARD R, TAHA M K. Lactobacillus paracasei feeding improves the control of secondary experimental meningococcal infection in flu-infected mice[J]. BMC Infectious Diseases, 2018, 18: 167. DOI: 10.1186/s12879-018-3086-9
doi: 10.1186/s12879-018-3086-9
38 YANG Y, SONG H, WANG L, et al. Antiviral effects of a probiotic metabolic products against transmissible gastroenteritis coronavirus[J]. Journal of Probiotics & Health, 2017, 5(3):184. DOI: 10.4172/2329-8901.1000184
doi: 10.4172/2329-8901.1000184
39 PARK M K, NGO V, KWON Y M, et al. Lactobacillus plantarum DK119 as a probiotic confers protection against influenza virus by modulating innate immunity[J]. PLoS ONE, 2013, 8(10): e75368. DOI: 10.1371/journal.pone.0075368
doi: 10.1371/journal.pone.0075368
40 KAWAHARA T, TAKAHASHI T, OISHI K, et al. Consecutive oral administration of Bifidobacterium longum MM-2 improves the defense system against influenza virus infection by enhancing natural killer cell activity in a murine model[J]. Microbiology and Immunology, 2015, 59(1): 1-12. DOI: 10.1111/1348-0421.12210
doi: 10.1111/1348-0421.12210
41 GROEGER D, SCHIAVI E, GRANT R, et al. Intranasal Bifidobacterium longum protects against viral-induced lung inflammation and injury in a murine model of lethal influenza infection[J]. EBioMedicine, 2020, 60: 102981. DOI: 10.1016/j.ebiom.2020.102981
doi: 10.1016/j.ebiom.2020.102981
42 ZOLNIKOVA O, KOMKOVA I, POTSKHERASHVILI N, et al. Application of probiotics for acute respiratory tract infections[J]. Italian Journal of Medicine, 2018, 12(1): 32. DOI: 10.4081/itjm.2018.931
doi: 10.4081/itjm.2018.931
43 OU Y C, FU H C, TSENG C W, et al. The influence of probiotics on genital high-risk human papilloma virus clearance and quality of cervical smear: a randomized placebo-controlled trial[J]. BMC Women’s Health, 2019, 19: 103. DOI: 10.1186/s12905-019-0798-y
doi: 10.1186/s12905-019-0798-y
44 LEE Y N, YOUN H N, KWON J H, et al. Sublingual administration of Lactobacillus rhamnosus affects respiratory immune responses and facilitates protection against influenza virus infection in mice[J]. Antiviral Research, 2013, 98(2): 284-290. DOI: 10.1016/j.antiviral.2013.03.013
doi: 10.1016/j.antiviral.2013.03.013
45 KIKUCHI Y, KUNITOH-ASARI A, HAYAKAWA K, et al. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice[J]. PLoS ONE, 2014, 9(1): e86416. DOI: 10.1371/journal.pone.0086416
doi: 10.1371/journal.pone.0086416
46 ALQAZLAN N, ALIZADEH M, BOODHOO N, et al. Probiotic lactobacilli limit avian influenza virus subtype H9N2 replication in chicken cecal tonsil mononuclear cells[J]. Vaccines, 2020, 8(4): 605. DOI: 10.3390/vaccines8040605
doi: 10.3390/vaccines8040605
47 SEO B J, RATHER I A, KUMAR V J R, et al. Evaluation of Leuconostoc mesenteroides YML003 as a probiotic against low-pathogenic avian influenza (H9N2) virus in chickens[J]. Journal of Applied Microbiology, 2012, 113(1): 163-171. DOI: 10.1111/j.1365-2672.2012.05326.x
doi: 10.1111/j.1365-2672.2012.05326.x
48 HU X T, ZHAO Y, YANG Y, et al. Akkermansia muciniphila improves host defense against influenza virus infection[J]. Frontiers in Microbiology, 2021, 11: 586476. DOI: 10.3389/fmicb.2020.586476
doi: 10.3389/fmicb.2020.586476
49 MAHOOTI M, ABDOLALIPOUR E, SALEHZADEH A, et al. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice[J]. World Journal of Microbiology and Biotechnology, 2019, 35(6): 91. DOI: 10.1007/s11274-019-2667-0
doi: 10.1007/s11274-019-2667-0
50 KAWASHIMA T, HAYASHI K, KOSAKA A, et al. Lactobacillus plantarum strain YU from fermented foods activates Th1 and protective immune responses[J]. International Immunopharmacology, 2011, 11(12): 2017-2024. DOI: 10.1016/j.intimp.2011.08.013
doi: 10.1016/j.intimp.2011.08.013
51 SONG J A, KIM H J, HONG S K, et al. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus[J]. Journal of Microbiology, Immunology and Infection, 2016, 49(1): 16-23. DOI: 10.1016/j.jmii.2014.07.011
doi: 10.1016/j.jmii.2014.07.011
52 JUNG Y J, LEE Y T, LE NGO V, et al. Heat-killed Lactobacillus casei confers broad protection against influenza A virus primary infection and develops heterosubtypic immunity against future secondary infection[J]. Scientific Reports, 2017, 7: 17360. DOI: 10.1038/s41598-017-17487-8
doi: 10.1038/s41598-017-17487-8
53 SHOJADOOST B, KULKARNI R R, BRISBIN J T, et al. Interactions between lactobacilli and chicken macrophages induce antiviral responses against avian influenza virus[J]. Research in Veterinary Science, 2019, 125: 441-450. DOI: 10.1016/j.rvsc.2017.10.007
doi: 10.1016/j.rvsc.2017.10.007
54 SUN Y X, QIAN J, XU X H, et al. Dendritic cell-targeted recombinant Lactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection[J]. Veterinary Microbiology, 2018, 223: 9-20. DOI: 10.1016/j.vetmic.2018.07.009
doi: 10.1016/j.vetmic.2018.07.009
55 JOUNAI K, IKADO K, SUGIMURA T, et al. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells[J]. PLoS ONE, 2012, 7(4): e32588. DOI: 10.1371/journal.pone.0032588
doi: 10.1371/journal.pone.0032588
56 KUMOVA O K, FIKE A J, THAYER J L, et al. Lung transcriptional unresponsiveness and loss of early influenza virus control in infected neonates is prevented by intranasal Lactobacillus rhamnosus GG[J]. PLoS Pathogens, 2019, 15(10): e1008072. DOI: 10.1371/journal.ppat.1008072
doi: 10.1371/journal.ppat.1008072
57 CHEN M F, WENG K F, HUANG S Y, et al. Pretreatment with a heat-killed probiotic modulates monocyte chemo-attractant protein-1 and reduces the pathogenicity of influenza and enterovirus 71 infections[J]. Mucosal Immunology, 2017, 10(1): 215-227. DOI: 10.1038/mi.2016.31
doi: 10.1038/mi.2016.31
58 SUNDARARAMAN A, RAY M, RAVINDRA P V, et al. Role of probiotics to combat viral infections with emphasis on COVID-19[J]. Applied Microbiology and Biotechnology, 2020, 104(19): 8089-8104. DOI: 10.1007/s00253-020-10832-4
doi: 10.1007/s00253-020-10832-4
59 YANG W T, YANG G L, WANG Q, et al. Protective efficacy of Fc targeting conserved influenza virus M2e antigen expressed by Lactobacillus plantarum [J]. Antiviral Research, 2017, 138: 9-21. DOI: 10.1016/j.antiviral.2016.11.025
doi: 10.1016/j.antiviral.2016.11.025
60 KASSAA I AL. New Insights on Antiviral Probiotics[M]. Cham, Switzerland: Springer Nature, 2016. DOI: 10.1007/978-3-319-49688-7
doi: 10.1007/978-3-319-49688-7
61 KISO M, TAKANO R, SAKABE S, et al. Protective efficacy of orally administered, heat-killed Lactobacillus pentosus b240 against influenza A virus[J]. Scientific Reports, 2013, 3: 1563. DOI: 10.1038/srep01563
doi: 10.1038/srep01563
62 NAKAYAMA Y, MORIYA T, SAKAI F, et al. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice[J]. Scientific Reports, 2014, 4: 4638. DOI: 10.1038/srep04638
doi: 10.1038/srep04638
63 GAO X, HUANG L L, ZHU L Q, et al. Inhibition of H9N2 virus invasion into dendritic cells by the S-layer protein from L. acidophilus ATCC 4356[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 137. DOI: 10.3389/fcimb.2016.00137
doi: 10.3389/fcimb.2016.00137
64 BESSELINK M G, VAN SANTVOORT H C, BUSKENS E, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial[J]. The Lancet, 2008, 371(9613): 651-659. DOI: 10.1016/S0140-6736(08)60207-X
doi: 10.1016/S0140-6736(08)60207-X
[1] 王晶,刘滔,赵敏洁,冯凤琴,戴笑莹,乔海军,彭昕. 三叶青地上部分对肉鸡肠道菌群、免疫功能和生长性能的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 863-872.
[2] 冯梦珂,王星博,林璐璐,崔明仙,颜焰,周继勇. 不同原核表达载体对非洲猪瘟病毒CD2v蛋白可溶性表达及免疫反应性比较[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 873-880.
[3] 戚培培,于晓,李博. 青枯劳尔氏菌型效应子的致病和无毒机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 651-661.
[4] 刘群,孙妍,王菁,魏俊利,董学旺,陈浩楠. 天津地区1例中华绒螯蟹“牛奶病”病原分离、鉴定及其病理特征分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 435-444.
[5] 刘梦娇,易航,蔡新忠. 环核苷酸门控离子通道基因CNGC3正调控拟南芥抗核盘菌免疫[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 594-604.
[6] 赵帅,顾天天,侯丽娥,张扬,曹正锋,陈国宏,徐琪,张钰. 鹅NLRC5序列特征及组织表达谱分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 254-260.
[7] 张维嘉,梁金秀,韩佩东. 斑马鱼心脏再生模型及研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 1-9.
[8] 田银平,易文. 哺乳动物核心岩藻糖基化研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 1-10.
[9] 袁新程,蒋飞,施永海,徐嘉波,刘永士,邓平平. 高温胁迫对美洲鲥1龄鱼种抗氧化与非特异性免疫相关指标的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 107-117.
[10] 赵航晔,夏琛,何普明,屠幼英. 茶多酚抗炎和促外伤愈合作用及其机制[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 118-126.
[11] 陈婧,何宏燕,刘昌胜. 微流芯片表面生物改性用于重组人骨形态发生蛋白-2的检测[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4): 391-399.
[12] 陈小连,宋文静,周泉勇,宋琼莉,邹志恒,刘林秀,胡利珍,韦启鹏,严景生,达列亚•阿合买提null. 广东紫珠提取物对母猪繁殖性能、免疫、抗氧化功能及肠道微生物的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(3): 360-368.
[13] 管若溦,刘建新. 围生期奶牛易感疾病的原因及常见病患的早期监测[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 519-525.
[14] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[15] 汤志宏,徐宁宁,叶均安. 复合益生菌和酵母培养物对热应激奶牛生产性能、瘤胃发酵和血清抗应激指标的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 611-618.