Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (2): 254-260    DOI: 10.3785/j.issn.1008-9209.2021.03.012
动物科学与动物医学     
鹅NLRC5序列特征及组织表达谱分析
赵帅1(),顾天天1,侯丽娥1,张扬1,曹正锋1,陈国宏1,2,徐琪1,张钰1()
1.扬州大学动物科学与技术学院,江苏 扬州 225009
2.扬州大学教育部农业与农产品安全国际合作联合实验室,江苏 扬州 225009
NLRC5 sequence characteristics and analysis of tissue expression profile in goose (Anser cygnoides)
Shuai ZHAO1(),Tiantian GU1,Li’e HOU1,Yang ZHANG1,Zhengfeng CAO1,Guohong CHEN1,2,Qi XU1,Yu ZHANG1()
1.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
2.Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
 全文: PDF(8456 KB)   HTML
摘要:

作为NOD样受体(NOD-like receptor, NLR)家族重要成员之一的NLRC5,在机体识别入侵微生物、传递免疫信号及调节先天性免疫反应中具有重要作用。本研究以扬州鹅为研究对象,分析鹅NLRC5序列特征,并通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, RT-qPCR)检测NLRC5基因的组织表达谱,同时检测雏鹅感染肠炎沙门菌0、1、2、4 d后肝脏、脾脏和肾脏中NLRC5的表达水平。结果显示:鹅NLRC5氨基酸序列在脊椎动物中高度保守,其中鹅与鸭NLRC5序列同源性为89.12%;NLRC5基因在心脏、肝脏、脾脏、肺、肾脏、十二指肠、肌胃、大脑和肌肉等组织中均有表达,其中在脾脏中的表达水平最高;此外,雏鹅感染肠炎沙门菌后其肝脏、脾脏和肾脏中NLRC5的表达量在1~2 d内显著上升(P<0.05),然后在感染4 d内恢复至正常水平。上述研究结果有助于理解NLRC5在鹅感染肠炎沙门菌免疫应答中的作用。

关键词: NLRC5先天性免疫反应肠炎沙门菌    
Abstract:

As one of the important members of the NOD-like receptor (NLR) family, NLRC5 plays an important role in the recognition of invading microorganisms, immune signal transmission and innate immune response regulation in vivo, but there are relatively few researches on NLRC5 in poultry. In this study, the Yangzhou goose was selected, and the sequence characteristics of NLRC5 was analyzed, and the expression profile of NLRC5 gene was detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The expression levels of NLRC5 in the liver, spleen and kidney of goslings infected with Salmonella enteritidis at 0, 1, 2 and 4 d post-infection were examined. The results showed that the amino acid sequence of goose NLRC5 was highly conserved in vertebrates, and shared high homology with duck (89.12%). The NLRC5 mRNA was widely expressed in the heart, liver, spleen, lung, kidney, duodenum, gizzard, brain and muscle, and its expression level was the highest in the spleen. In addition, the expressions of NLRC5 in the liver, spleen and kidney of goslings infected with S.enteritidis were significantly upregulated during 1-2 d, and then returned to normal at 4 d post-infection. The above results are helpful to understand the role of NLRC5 in the immune response of goose infected with S. enteritidis.

Key words: NLRC5    goose    innate immune response    Salmonella enteritidis
收稿日期: 2021-03-01 出版日期: 2022-04-29
CLC:  S 835  
基金资助: 国家现代农业产业技术体系(CARS-42-3);江苏省扬州市现代农业重点研发计划(YZ2020053)
通讯作者: 张钰     E-mail: 626981977@qq.com;yuzhang@yzu.edu.cn
作者简介: 赵帅(https://orcid.org/0000-0002-2188-8585),E-mail:626981977@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵帅
顾天天
侯丽娥
张扬
曹正锋
陈国宏
徐琪
张钰

引用本文:

赵帅,顾天天,侯丽娥,张扬,曹正锋,陈国宏,徐琪,张钰. 鹅NLRC5序列特征及组织表达谱分析[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 254-260.

Shuai ZHAO,Tiantian GU,Li’e HOU,Yang ZHANG,Zhengfeng CAO,Guohong CHEN,Qi XU,Yu ZHANG. NLRC5 sequence characteristics and analysis of tissue expression profile in goose (Anser cygnoides). Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 254-260.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.012        https://www.zjujournals.com/agr/CN/Y2022/V48/I2/254

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

退火温度

Annealing temperature/℃

qNLRC5-FGAACTGCACGTCAGGAAGGA60
qNLRC5-RTGCATGTTGCAAAGACAGGC
qGAPDH-FGTGGTGCAAGAGGCATTGCTGAC60
qGAPDH-RGCTGATGCTCCCATGTTCGTGAT
表1  RT-qPCR引物信息
图1  NLRC5氨基酸序列分析

物种

Species

Human

Pig

Mouse

Chicken

Duck

Goose

斑马鱼

Zebrafish

人 Human100.00
猪 Pig68.00100.00
鼠 Mouse58.7859.18100.00
鸡 Chicken35.0635.9634.45100.00
鸭 Duck34.7035.5133.4077.08100.00
鹅 Goose34.5535.3633.6577.7889.12100.00
斑马鱼 Zebrafish21.8722.6221.9724.4724.6724.77100.00
表2  各物种的NLRC5氨基酸序列同源性比对 (%)
图2  NLRC5 基因的进化树分析
图3  鹅 NLRC5 基因在各组织中的表达谱分析短栅上不同小写字母表示在P<0.05水平差异有统计学意义,下同。
图4  肠炎沙门菌感染后雏鹅不同组织中 NLRC5 mRNA的表达量变化A.肝脏;B.脾脏;C.肾脏。
1 AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783-801. DOI:10 .1016/j.cell.2006.02.015
doi: 10
2 李天亮,韩超峰,曹雪涛.视黄酸诱导基因1样受体(RLR)识别和调控的研究进展[J].细胞与分子免疫学杂志,2016,32(4):549-552. DOI:10.13423/j.cnki.cjcmi.007737
LI T L, HAN C F, CAO X T. Research progress on recognition and regulation of retinoic acid-induced gene 1-like receptor (RLR)[J]. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(4): 549-552. (in Chinese)
doi: 10.13423/j.cnki.cjcmi.007737
3 YANG Q Y, CHEN T, CHEN Y B, et al. Molecular characterization and expression analysis of the NLR family CARD containing five transcripts in the pig[J]. Polish Journal of Veterinary Sciences, 2016, 19(4): 753-761. DOI:10.1515/pjvs-2016-0095
doi: 10.1515/pjvs-2016-0095
4 INOHARA N, NU?EZ G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens[J]. Oncogene, 2001, 20(44): 6473-6481. DOI:10.1038/sj.onc.1204787
doi: 10.1038/sj.onc.1204787
5 RODRIGUEZ G M, BOBBALA D, SERRANO D, et al. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes[J]. Oncoimmunology, 2016, 5(6): e1151593. DOI:10.1080/2162402X.2016.1151593
doi: 10.1080/2162402X.2016.1151593
6 CHONWERAWONG M, FERRAND J, CHAUDHRY H M, et al. Innate immune molecule NLRC5 protects mice from Helicobacter-induced formation of gastric lymphoid tissue[J]. Gastroenterology, 2020, 159(1): 169-182. DOI:10.1053/j.gastro.2020.03.009
doi: 10.1053/j.gastro.2020.03.009
7 MARTH C D, FIRESTONE S M, GLENTON L Y, et al. Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis[J]. Veterinary Research, 2016, 47(1): 110. DOI:10.1186/s13567-016-0398-x
doi: 10.1186/s13567-016-0398-x
8 WANG Y Y, HUANG C, BIAN E, et al. NLRC5 negatively regulates inflammatory responses in LPS-induced acute lung injury through NF-κB and p38 MAPK signal pathways[J]. Toxicology and Applied Pharmacology, 2020, 403: 115150. DOI:10.1016/j.taap.2020.115150
doi: 10.1016/j.taap.2020.115150
9 QIU L L, MA T, CHANG G B, et al. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum [J]. Gene, 2017, 597: 23-29. DOI:10.1016/j.gene.2016.10.026
doi: 10.1016/j.gene.2016.10.026
10 CIRACI C, TUGGLE C K, WANNEMUEHLER M J, et al. Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin[J]. BMC Genomics, 2010, 11(1): 545. DOI:10.1186/1471-2164-11-545
doi: 10.1186/1471-2164-11-545
11 ZAKI M H, VOGEL P, MALIREDDI R K S, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis[J]. Cancer Cell, 2011, 20(5): 649-660. DOI:10.1016/j.ccr.2011.10.022
doi: 10.1016/j.ccr.2011.10.022
12 CASTA?O-RODRíGUEZ N, KAAKOUSH N O, GOH K L, et al. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses[J]. PLoS ONE, 2014, 9(6): e98899. DOI:10.1371/journal.pone.0098899
doi: 10.1371/journal.pone.0098899
13 CHANG G B, LIU X P, MA T, et al. A mutation in the NLRC5 promoter limits NF-κB signaling after Salmonella enteriditis infection in the spleen of young chickens[J]. Gene, 2015, 568(2): 117-123. DOI:10.1016/j.gene.2015.05.023
doi: 10.1016/j.gene.2015.05.023
14 TONG Y Z, CUI J, LI Q T, et al. Enhanced TLR-induced NF-κB signaling and typeⅠ interferon responses in NLRC5 deficient mice[J]. Cell Research, 2012, 22(5): 822-835. DOI:10.1038/cr.2012.53
doi: 10.1038/cr.2012.53
15 YAO Y K, QIAN Y C. Expression regulation and function of NLRC5[J]. Protein & Cell, 2013, 4(3): 168-175. DOI:10.1007/s13238-012-2109-3
doi: 10.1007/s13238-012-2109-3
16 BENKO S, MAGALHAES J G, PHILPOTT D J, et al. NLRC5 limits the activation of inflammatory pathways[J]. The Journal of Immunology, 2010, 185(3): 1681-1691. DOI:10.4049/jimmunol.0903900
doi: 10.4049/jimmunol.0903900
17 NEERINCX A, LAUTZ K, MENNING M, et al. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses[J]. Journal of Biological Chemistry, 2010, 285(34): 26223-26232. DOI:10.1074/jbc.M110.109736
doi: 10.1074/jbc.M110.109736
18 BISWAS A, MEISSNER T B, KAWAI T, et al. Cutting edge: impaired MHC classⅠexpression in mice deficient for NlRC5/classⅠ transactivator[J]. The Journal of Immunology, 2012, 189(2): 516-520. DOI:10.4049/jimmunol.1200064
doi: 10.4049/jimmunol.1200064
19 LUPFER C, KANNEGANTI T D. The expanding role of NLRs in antiviral immunity[J]. Immunological Reviews, 2013, 255(1): 13-24. DOI:10.1111/imr.12089
doi: 10.1111/imr.12089
20 CUI J, ZHU L, XIA X J, et al. NLRC5 negatively regulates the NF-κB and typeⅠ interferon signaling pathways[J]. Cell, 2010, 141(3): 483-496. DOI:10.1016/j.cell.2010.03.040
doi: 10.1016/j.cell.2010.03.040
21 LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10 .1006/meth.2001.1262
doi: 10
22 FAN G W, ZHANG Y, JIANG X R, et al. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-κB-dependent pathways[J]. Inflammation, 2013, 36(6): 1584-1591. DOI:10 .1007/s10753-013-9703-2
doi: 10
23 KOPPULA S, KIM W J, JIANG J, et al. Carpesium macrocephalum attenuates lipopolysaccharide-induced inflammation in macrophages by regulating the NF-κB/IκB-α, Akt, and STAT signaling pathways[J]. The American Journal of Chinese Medicine, 2013, 41(4): 927-943. DOI:10.1142/S0192415X13500626
doi: 10.1142/S0192415X13500626
24 International HapMap Consortium. The International HapMap Project[DS]. Nature, 2003, 426(6968): 789-796. DOI: 10.1038/nature02168
doi: 10.1038/nature02168
25 DAVIS B K, ROBERTS R A, HUANG M T, et al. Cutting edge: NLRC5-dependent activation of the inflammasome[J]. The Journal of Immunology, 2011, 186(3): 1333-1337. DOI:10.4049/jimmunol.1003111
doi: 10.4049/jimmunol.1003111
[1] 袁鑫,李亮,何桦,胡深强,王继文. CRISPR-Cas9敲减鹅硬脂酰辅酶A去饱和酶基因的慢病毒质粒构建[J]. 浙江大学学报(农业与生命科学版), 2020, 46(5): 529-538.
[2] 邹琳,杭妙佳,李阳,杜鹃,冯凤琴. 鲣鱼黄嘌呤氧化酶抑制肽酶法制备工艺优化[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 550-562.
[3] 易治鑫,蒋易龙,王秋宏,徐麒麟,王新兴,莫桂林,姜冬梅,康波. 精胺对鹅免疫器官指数及免疫相关因子基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 596-602.
[4] 莫远亮,王郁石,王继文. 天府肉鹅母系不同阶段颗粒细胞内参基因的选择[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 376-384.
[5] 关法春,边步云,黄立华,张永锋,李晓辉,张立春. 农牧一体化农田系统可利用生产资源分析[J]. 浙江大学学报(农业与生命科学版), 2019, 45(2): 221-228.
[6] 赵倩明,朱隆基,詹康,霍永久,赵国琦. 不同粉碎粒度苜蓿草粉对扬州鹅生产性能和血液生化指标的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 253-261.
[7] 沙志鹏, 关法春*, 王军峰, 田飞鹏. 玉米田养鹅生产模式的能值评估[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 655-662.
[8] 刘 菲,唐卫杰,程安春,汪铭书,赵婷婷,高丽芹. 鹅α干扰素基因在COS-7细胞中的瞬时表达及抗病毒功能初探[J]. 浙江大学学报(农业与生命科学版), 2011, 37(4): 380-386.