Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (5): 550-562    DOI: 10.3785/j.issn.1008-9209.2019.01.101
食品科学     
鲣鱼黄嘌呤氧化酶抑制肽酶法制备工艺优化
邹琳1(),杭妙佳1,李阳1,杜鹃2,冯凤琴1()
1. 浙江大学生物系统工程与食品科学学院,杭州 310058
2. 杭州康源食品科技有限公司,杭州 310003
Optimization of enzymatic hydrolysis process for preparing xanthine oxidase inhibitory peptides from skipjack tuna
Lin ZOU1(),Miaojia HANG1,Yang LI1,Juan DU2,Fengqin FENG1()
1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2. Hangzhou Kangyuan Food Science & Technology Co. , Ltd. , Hangzhou 310003, China
 全文: PDF(4822 KB)   HTML
摘要:

以鲣鱼为原料,利用酶法制备鲣鱼黄嘌呤氧化酶(xanthine oxidase, XOD)抑制肽。在单因素试验的基础上,采用Box-Behnken响应面分析法,以水解度、氮回收率、XOD抑制活性、肌肽及鹅肌肽含量为响应值,对酶解工艺中蛋白酶种类、加酶量、酶解pH、温度和时间等影响因素进行优化,得到酶解的最优工艺:采用中性蛋白酶,加酶量为489.86 U/g,酶解pH为7.08,酶解温度为49.5 ℃,酶解时间为5 h。在此条件下,鲣鱼酶解产物的水解度为22.38%,氮回收率为83.31%,XOD抑制活性达到62.26%,肌肽和鹅肌肽含量分别为0.05%和2.45%(以干基计),与回归模型理论预测值基本一致。由本法所得的鲣鱼XOD抑制肽是以分子质量低于1 000 Da的寡肽为主。皮尔逊相关性分析表明,XOD抑制活性与肌肽或鹅肌肽含量无相关性,推测在酶解过程中产生了其他具有XOD抑制活性的小分子肽。

关键词: 鲣鱼黄嘌呤氧化酶抑制肽酶解工艺肌肽鹅肌肽    
Abstract:

Skipjack tuna was enzymatically hydrolyzed to prepare xanthine oxidase (XOD) inhibitory peptides. The enzymatic hydrolysis process was optimized by investigating the effects of protease types and enzymatic dosages, pH, temperature, time and their interactions on degree of hydrolysis, nitrogen recovery, XOD inhibition activity and the contents of carnosine and anserine using one-factor-at-a-time method and response surface methodology. The optimal process parameters were as follows: the application of neutrase with the dosage of 489.86 U/g, the pH of 7.08, the temperature of 49.5 ℃, and the time of 5 h. Under the optimal conditions, the degree of hydrolysis was 22.38%; nitrogen recovery was 83.81%; XOD inhibition activity was 62.26%; and the contents of carnosine and anserine were 0.05% and 2.45% (on a dried basis), respectively, which were all in good agreement with the predicted values. The XOD inhibitory peptides obtained were mainly composed of a fraction with molecular mass of less than 1 000 Da. The Pearson’s correlation analysis showed that the XOD inhibition activity of dorsal and ventral muscle in skipjack tuna was not associated with the contents of carnosine and anserine, and it may be due to the production of other XOD inhibitory peptides during the enzymatic hydrolysis.

Key words: skipjack tuna    xanthine oxidase inhibitory peptides    enzymatic hydrolysis process    carnosine    anserine
收稿日期: 2019-01-10 出版日期: 2019-12-05
CLC:  TS 254.1  
基金资助: 浙江大学科技合作项目“水产动物源功能蛋白肽产品研究开发”(K横20182914);浙江大学实验技术研究项目(SJS201708)
通讯作者: 冯凤琴     E-mail: zoulin@zju.edu.cn;fengfq@zju.edu.cn
作者简介: 邹琳(https://orcid.org/0000-0002-4892-251X),E-mail:zoulin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邹琳
杭妙佳
李阳
杜鹃
冯凤琴

引用本文:

邹琳,杭妙佳,李阳,杜鹃,冯凤琴. 鲣鱼黄嘌呤氧化酶抑制肽酶法制备工艺优化[J]. 浙江大学学报(农业与生命科学版), 2019, 45(5): 550-562.

Lin ZOU,Miaojia HANG,Yang LI,Juan DU,Fengqin FENG. Optimization of enzymatic hydrolysis process for preparing xanthine oxidase inhibitory peptides from skipjack tuna. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 550-562.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.01.101        http://www.zjujournals.com/agr/CN/Y2019/V45/I5/550

蛋白酶

Protease

酶活性

Enzymaticactivity/(U/g)

最适条件

Optimal condition

t/℃pH

中性蛋白酶

Neutrase

88 437507.0

碱性蛋白酶

Alcalase

181 277508.0

木瓜蛋白酶

Papain

223 678506.5

复合蛋白酶

Protamex

20 076507.5

胰酶

Pancreatin

319 833508.0
表1  各蛋白酶的最适酶解条件
蛋白酶 Protease评价指标 Evaluation index

XOD抑制活性

XOD inhibition activity/%

氮回收率

Nitrogen recovery/%

水解度

Degree of hydrolysis/%

中性蛋白酶 Neutrase94.99±0.64a97.57±0.85a26.52±0.25a
碱性蛋白酶 Alcalase89.53±0.75c94.85±0.27b20.36±0.27d
木瓜蛋白酶 Papain83.04±0.44d76.82±0.54d24.08±0.45b
复合蛋白酶 Protamex89.17±0.27c96.14±0.40ab22.64±0.37c
胰酶 Pancreatin91.76±0.30b86.20±0.35c16.34±0.21e
对照 Control-5.69±0.06e19.50±0.49eND
表2  不同蛋白酶对XOD抑制活性、氮回收率和水解度的影响
图1  加酶量对鲣鱼背腹肉酶解效果的影响短栅上的不同小写字母表示在P<0.05水平差异有统计学意义;n=3。
图2  酶解温度对鲣鱼背腹肉酶解效果的影响短栅上的不同小写字母表示在P<0.05水平差异有统计学意义;n=3。
图3  酶解pH对鲣鱼背腹肉酶解效果的影响短栅上的不同小写字母表示在P<0.05水平差异有统计学意义;n=3。
图4  酶解时间对鲣鱼背腹肉酶解效果的影响短栅上的不同小写字母表示在P<0.05水平差异有统计学意义;n=3。

水平

Level

因素 Factor

加酶量(A

Enzyme dosage/(U/g)

pH(B

酶解温度(C

Temperature/℃

-14006.545
05007.050
16007.555
表3  酶解工艺优化的响应面试验因素与水平

编号

No.

加酶量(A

Enzyme dosage/(U/g)

pH (B)

酶解温度(C

Temperature/℃

Y1/%Y2/%Y3/%Y4/%Y5/%
14007.05518.1381.6053.250.471.36
25007.55518.5580.6653.350.371.24
35007.54519.3881.9554.480.451.35
45007.05025.6786.8763.960.351.41
55007.05023.9986.4364.580.331.34
65006.55519.0382.5553.480.161.12
76007.05524.0484.6555.470.291.13
86006.55024.7384.7753.460.331.54
95007.05023.6687.6665.570.411.30
104006.55018.4781.6252.240.321.19
116007.04524.7183.3157.140.451.01
124007.04519.0881.4553.580.431.28
135006.54520.5883.6551.240.461.02
145007.05023.3587.4464.690.391.32
155007.05023.7786.2365.390.361.33
166007.55023.9083.3155.330.331.16
174007.55018.0180.7652.290.341.72
表4  酶解工艺优化的响应面试验设计及结果
  
  

参量

Parameter

XOD抑制活性

XOD inhibition activity

肌肽含量

Carnosine content

鹅肌肽含量

Anserine content

XOD抑制活性

XOD inhibition activity

10.0200.118

肌肽含量

Carnosine content

1-0.017

鹅肌肽含量

Anserine content

1
表5  肌肽、鹅肌肽含量与XOD抑制活性的皮尔逊相关性分析
图6  鲣鱼背腹肉酶解产物分子质量分布情况
1 BORGHI C. The management of hyperuricemia: back to the pathophysiology of uric acid. Current Medical Research & Opinion, 2017,33(Suppl. 3):1-4.
2 VILLIGER A, SALA F, SUTER A, et al. In vitro inhibitory potential of Cynara scolymus, Silybum marianum, Taraxacum officinale, and Peumus boldus on key enzymes relevant to metabolic syndrome. Phytomedicine, 2015,22(1):138-144.
3 NDREPEPA G. Uric acid and cardiovascular disease. Clinica Chimica Acta, 2018,484:150-163.
4 LI X, MENG X R, TIMOFEEVA M, et al. Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. British Medical Journal, 2017,357:j2376.
5 FRANCES R, MICHELLE H, MICHAEL D. Optimizing current treatment of gout. Nature Reviews Rheumatology, 2014,10(5):271-283.
6 BURNS C M, WORTMANN R L. Gout therapeutics: new drugs for an old disease. The Lancet, 2011,377(9760):165-177.
7 MIAO M, WANG X, YAN L U, et al. Mechanism study on effects of apigenin on reducing uric acid and renal protection in oteracil potassium-induced hyperuricemia mice. China Pharmacy, 2016,27(34):4794-4796.
8 YAN J K, ZHANG G W, HU Y T, et al. Effect of luteolin on xanthine oxidase: inhibition kinetics and interaction mechanism merging with docking simulation. Food Chemistry, 2013,141(4):3766-3773.
9 NILE S H, NILE A S, KEUM Y S, et al. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chemistry, 2017,235:119-126.
10 CHEN G, TAN M L, LI K K, et al. Green tea polyphenols decreases uric acid level through xanthine oxidase and renal urate transporters in hyperuricemic mice. Journal of Ethnopharmacology, 2015,175:14-20.
11 LEE C T, CHANG L C, LIU C W, et al. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats. Molecular Nutrition & Food Research, 2017,61(10):1-9.
12 SANG M M, DU G Y, HAO J, et al. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology. Journal of Pharmaceutical & Biomedical Analysis, 2017,139:37-43.
13 LIU Y L, PAN Y, WANG X, et al. Betaine reduces serum uric acid levels and improves kidney function in hyperuricemic mice. Planta Medica, 2014,80(1):39-47.
14 黎青勇.核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究.广州:华南理工大学,2018:23-24.
LI Q Y. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-lowering peptides derived from walnut. Guangzhou: South China University of Technology, 2018:23-24. (in Chinese with English abstract)
15 LI Y J, KANG X Y, LI Q Y, et al. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity. Peptides, 2018,107:45-53.
16 LI H P, ZHAO M M, SU G W, et al. Effect of soy sauce on serum uric acid levels in hyperuricemic rats and identification of flazin as a potent xanthine oxidase inhibitor. Journal of Agricultural and Food Chemistry, 2016,64(23):4725-4734.
17 MASUOKA N, KUBO I. Characterization of the xanthine oxidase inhibitory activity of alk(en)yl phenols and related compounds. Phytochemistry, 2018,155:100-106.
18 BOLDYREV A A, ALDINI G, DERAVE W. Physiology and pathophysiology of carnosine. Physiological Reviews, 2013,93(4):1803-1845.
19 郑霖波,白冬,虞舟,等.深海鲣鱼鱼油对D-半乳糖致衰老模型小鼠抗衰老的作用.食品科学,2019,40(5):202-206.
ZHENG L B, BAI D, YU Z, et al. Protective effect of skipjack tuna oil against D-galactose-induced aging in mice. Food Science, 2019,40(5):202-206. (in Chinese with English abstract)
20 李天翔.鲣鱼罐头预处理工艺对鱼肉蛋白及组胺变化的影响.上海:上海海洋大学,2017:12-13.
LI T X. Effect of pretreatment processes on muscle proteins and histamine variation of canned skipjack. Shanghai: Shanghai Ocean University, 2017:12-13. (in Chinese with English abstract)
21 ABE H. Determination of L-histidine-related compounds in fish muscles using high-performance liquid chromatography. Bulletin of the Japanese Society of Scientific Fisheries, 1981,47(1):139.
22 KUBOMURA D, YAMADA M, MASUI A. Tuna extract reduces serum uric acid in gout-free subjects with insignificantly high serum uric acid: a randomized controlled trial. Biomedical Reports, 2016,5(2):254-258.
23 OTSUKA Y, OHNO Y, MORITA A, et al. Molecular mechanism of urate-lowering effects of anserine nitrate. Gout and Nucleic Acid Metabolism, 2016,40(2):137-143.
24 VáZQUEZ J A, BLANCO M, FRAGUAS J, et al. Optimisation of the extraction and purification of chondroitin sulphate from head by-products of Prionace glauca by environmental friendly processes. Food Chemistry, 2016,198:28-35.
25 何思莲.鳀鱼蛋白内/外源酶法水解及产物抗氧化性的研究.广州:华南理工大学,2013:52.
HE S L. Study of anchovy protein hydrolysis by endogenous/exogenous protease and antioxidant activities of hydrolysates. Guangzhou: South China University of Technology, 2013:52. (in Chinese with English abstract)
26 郭善广,赵谋明,蒋爱民.酶水解猪血红蛋白过程蛋白质降解和氨基酸释放.食品工业科技, 2009(5):162-166.
GUO S G, ZHAO M M, JIANG A M. Protein degradation and amino acid release in the processing of hydrolysis of porcine hemoglobin concentrate. Science and Technology of Food Industry, 2009(5):162-166. (in Chinese with English abstract)
27 厉望.带鱼蛋白酶解制备抗氧化活性肽的研究.杭州:浙江大学,2013:31.
LI W. Preparation of antioxidant peptides derived from hairtail protein. Hangzhou: Zhejiang University, 2013:31. (in Chinese with English abstract)
28 田旭静,段鹏慧,范三红,等.响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺.食品科学,2018,39(10):158-164.
TIAN X J, DUAN P H, FAN S H, et al. Response surface methodology for optimization of hydrolysis conditions for preparing antioxidant peptides from quinoa bran protein. Food Science, 2018,39(10):158-164. (in Chinese with English abstract)
29 ASPMO S I, HORN S J, EIJSINK V G H. Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 2005,40(5):1957-1966.
30 钟机.蓝圆鲹鱼肉蛋白酶解液的制备及其Maillard反应生香工艺研究.福州:福建农林大学,2017:30.
ZHONG J. Study on the preparation of enzymatic hydrolysate of Decapterus maruadsi proteins and Maillard reaction. Fuzhou: Fujian Agriculture and Forestry University, 2017:30. (in Chinese with English abstract)
31 MURALIDHAR R V, CHIRUMAMILA R R, MARCHANT R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochemical Engineering Journal, 2001,9(1):17-23.
32 XIAO S L, ZHUANG H, ZHOU G H, et al. Investigation of inhibition of lipid oxidation by L-carnosine using an oxidized-myoglobin-mediated washed fish muscle system. LWT: Food Science and Technology, 2018,97:703-710.
33 朱俊颖.改性介孔材料分离组氨酸二肽技术研究.上海:华东理工大学,2016:14-15.
ZHU J Y. Absorption and concentration of histidine containing dipeptides by functionalized mesoporous material. Shanghai: East China University of Science and Technology, 2016:14-15. (in Chinese with English abstract)
34 LI Q Y, KANG X Y, SHI C C, et al. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food & Function, 2017,9(1):107-116.
35 MUROTA I, TAGUCHI S, SATO N, et al. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation. Journal of Agricultural and Food Chemistry, 2014,62(11):2392-2397.
No related articles found!