Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (1): 1-9    DOI: 10.3785/j.issn.1008-9209.2021.03.031
综述     
斑马鱼心脏再生模型及研究进展
张维嘉(),梁金秀,韩佩东()
浙江大学医学院遗传学研究所,杭州 310058
Research progress of zebrafish heart regeneration models
Weijia ZHANG(),Jinxiu LIANG,Peidong HAN()
Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1939 KB)   HTML
摘要:

心脏病作为一种发病率和死亡率很高的疾病,严重威胁人类身体健康。斑马鱼作为模式生物,其成体心脏再生功能的发现,为研究和治疗心脏疾病拓展了新的视角。本文综述了多种斑马鱼心脏损伤模型,包括心尖切除损伤、冰冻损伤以及心肌细胞遗传消融模型等;并深入探讨了心脏再生过程中的关键生物学过程,包括多种信号通路在不同细胞类型的时序性激活、心肌细胞表观遗传学编程、冠状血管新生、发育相关关键转录因子的激活以及心肌细胞肌节结构的解离和重构等。对心脏再生机制的解析有望为人类心脏疾病的治疗提供新的思路和干预策略。

关键词: 斑马鱼心脏再生心脏损伤模型心外膜细胞心内膜细胞成纤维细胞免疫细胞    
Abstract:

Heart disease is a major threat to human health due to the high morbidity and mortality rates. As a result, the discovery of adult zebrafish heart regeneration provides a new perspective for the study and treatment of human heart diseases. This study reviewed the zebrafish heart injury models for heart regeneration, such as apex amputation, cryoinjury, genetic ablation of cardiomyocyte models and so on. In addition, we also explored the essential mechanisms underlying heart regeneration, including the spatiotemporal activation of multiple signaling pathways in different cell types, epigenetic reprogramming, coronary revascularization, activation of key development-related transcription factors, and the disassembly and reassembly of cardiomyocyte sarcomeric structure. Analysis of the mechanism of heart regeneration provides more references basis for therapeutic strategies to overcome heart disease in the future.

Key words: zebrafish    heart regeneration    heart injury model    epicardial cell    endocardial cell    fibroblasts    immune cell
收稿日期: 2021-03-03 出版日期: 2022-03-04
CLC:  Q 28  
基金资助: 国家自然科学基金(31871462)
通讯作者: 韩佩东     E-mail: zhangweijia@zju.edu.cn;hanpd@zju.edu.cn
作者简介: 张维嘉(https://orcid.org/0000-0001-9849-8094),E-mail:zhangweijia@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张维嘉
梁金秀
韩佩东

引用本文:

张维嘉,梁金秀,韩佩东. 斑马鱼心脏再生模型及研究进展[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 1-9.

Weijia ZHANG,Jinxiu LIANG,Peidong HAN. Research progress of zebrafish heart regeneration models. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 1-9.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.031        https://www.zjujournals.com/agr/CN/Y2022/V48/I1/1

图1  斑马鱼心脏损伤模型示意图A~D.成年斑马鱼心室结构;E.斑马鱼心脏损伤诱导不同细胞类型参与再生进程的时间线。
1 PASUMARTHI K B S , FIELD L J . Cardiomyocyte cell cycle regulation[J]. Circulation Research, 2002, 90(10): 1044-1054. DOI:10.1161/01.res.0000020201.44772.67
doi: 10.1161/01.res.0000020201.44772.67
2 SHIBA Y J , FERNANDES S , ZHU W Z , et al . hESC-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts[J]. Nature, 2012, 489(7415): 322-325. DOI:10.1038/nature11317
doi: 10.1038/nature11317
3 SHIBA Y J , GOMIBUCHI T , SETO T , et al . Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts[J]. Nature, 2016, 538(7625): 388-391. DOI:10 .1038/nature19815
doi: 10
4 KIKUCHI K , HOLDWAY J E , WERDICH A A , et al . Primary contribution to zebrafish heart regeneration by gata4 + cardiomyocytes[J]. Nature, 2010, 464(7288): 601-605. DOI:10.1038/nature08804
doi: 10.1038/nature08804
5 JOPLING C , SLEEP E , RAYA M , et al . Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation[J]. Nature, 2010, 464(7288): 606-609. DOI:10 .1038/nature08899
doi: 10
6 SADLER K C , KRAHN K N , GAUR N A , et al . Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1 [J]. PNAS, 2007, 104(5): 1570-1575. DOI:10.1073/pnas.0610774104
doi: 10.1073/pnas.0610774104
7 CAMERON D A . Cellular proliferation and neurogenesis in the injured retina of adult zebrafish[J]. Visual Neuroscience, 2000, 17(5): 789-797. DOI:10.1017/s0952523800175121
doi: 10.1017/s0952523800175121
8 JOHNSON S L , WESTON J A . Temperature-sensitive mutations that cause stage-specific defects in zebrafish fin regeneration[J]. Genetics, 1995, 141(4): 1583-1595. DOI:10.1093/genetics/141.4.1583
doi: 10.1093/genetics/141.4.1583
9 POSS K D , WILSON L G , KEATING M T . Heart regeneration in zebrafish[J]. Science, 2002, 298(5601): 2188-2190. DOI:10.1126/science.1077857
doi: 10.1126/science.1077857
10 LEPILINA A , COON A N , KIKUCHI K , et al . A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration[J]. Cell, 2006, 127(3): 607-619. DOI:10.1016/j.cell.2006.08.052
doi: 10.1016/j.cell.2006.08.052
11 KIKUCHI K , HOLDWAY J E , MAJOR R J , et al . Retinoic acid production by endocardium and epicardium is an injury response essential for zebrafish heart regeneration[J]. Developmental Cell, 2011, 20(3): 397-404. DOI:10.1016/j.devcel.2011.01.010
doi: 10.1016/j.devcel.2011.01.010
12 SCHNABEL K , WU C C , KURTH T , et al . Regeneration of cryoinjury induced necrotic heart lesions in zebrafish is associated with epicardial activation and cardiomyocyte proliferation[J]. PLoS ONE, 2011, 6(4): e18503. DOI:10.1371/journal.pone.0018503
doi: 10.1371/journal.pone.0018503
13 GONZáLEZ-ROSA J M , MARTIN V , PERALTA M , et al . Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish[J]. Development, 2011, 138(9): 1663-1674. DOI:10.1242/dev.060897
doi: 10.1242/dev.060897
14 WANG J H , KARRA R , DICKSON A L , et al . Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration[J]. Developmental Biology, 2013, 382(2): 427-435. DOI:10.1016/j.ydbio.2013.08.012
doi: 10.1016/j.ydbio.2013.08.012
15 XIAO C L , GAO L , HOU Y , et al . Chromatin-remodelling factor Brg1 regulates myocardial proliferation and regeneration in zebrafish[J]. Nature Communications, 2016, 7: 13787. DOI:10.1038/ncomms13787
doi: 10.1038/ncomms13787
16 SCHINDLER Y L , GARSKE K M , WANG J H , et al . Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration[J]. Development, 2014, 141(16): 3112-3122. DOI:10.1242/dev.106336
doi: 10.1242/dev.106336
17 KIKUCHI K , POSS K D . Cardiac regenerative capacity and mechanisms[J]. Annual Review of Cell and Development Biology, 2012, 28: 719-741. DOI:10.1146/annurev-cellbio-101011-155739
doi: 10.1146/annurev-cellbio-101011-155739
18 CHABLAIS F , VEIT J , RAINER G , et al . The zebrafish heart regenerates after cryoinjury-induced myocardial infarction[J]. BMC Developmental Biology, 2011, 11: 21. DOI:10.1186/1471-213X-11-21
doi: 10.1186/1471-213X-11-21
19 CURADO S , ANDERSON R M , JUNGBLUT B , et al . Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies[J]. Developmental Dynamics, 2007, 236(4): 1025-1035. DOI:10.1002/dvdy.21100
doi: 10.1002/dvdy.21100
20 ZHANG R L , HAN P D , YANG H B , et al . In vivo cardiac reprogramming contributes to zebrafish heart regeneration[J]. Nature, 2013, 498(7455): 497-501. DOI:10.1038/nature12322
doi: 10.1038/nature12322
21 PARENTE V , BALASSO S , POMPILIO G , et al . Hypoxia/reoxygenation cardiac injury and regeneration in zebrafish adult heart[J]. PLoS ONE, 2013, 8(1): e53748. DOI:10.1371/journal.pone.0053748
doi: 10.1371/journal.pone.0053748
22 GEMBERLING M , KARRA R , DICKSON A L , et al . Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish[J]. eLife, 2015, 4: e05871. DOI:10.7554/eLife.05871
doi: 10.7554/eLife.05871
23 HAYDEN M S , GHOSH S . NF-κB, the first quarter-century: remarkable progress and outstanding questions[J]. Genes & Development, 2012, 26(3): 203-234. DOI:10.1101/gad.183434.111
doi: 10.1101/gad.183434.111
24 KARRA R , KNECHT A K , KIKUCHI K , et al . Myocardial NF-κB activation is essential for zebrafish heart regeneration[J]. PNAS, 2015, 112(43): 13255-13260. DOI:10.1073/pnas.1511209112
doi: 10.1073/pnas.1511209112
25 SANTOS C X C , ANILKUMAR N , ZHANG M , et al . Redox signaling in cardiac myocytes[J]. Free Radical Biology and Medicine, 2011, 50(7): 777-793. DOI:10.1016/j.freeradbiomed.2011.01.003
doi: 10.1016/j.freeradbiomed.2011.01.003
26 JOPLING C , SU?é G , FAUCHERRE A , et al . Hypoxia induces myocardial regeneration in zebrafish[J]. Circulation, 2012, 126(25): 3017-3027. DOI:10.1161/CIRCULATIONAHA.112.107888
doi: 10.1161/CIRCULATIONAHA.112.107888
27 HAFSI H , HAINAUT P . Redox control and interplay between p53 isoforms: roles in the regulation of basal p53 levels, cell fate, and senescence[J]. Antioxidants & Redox Signaling, 2011, 15(6): 1655-1667. DOI:10.1089/ars.2010.3771
doi: 10.1089/ars.2010.3771
28 MA D J , TU C G , SHENG Q H , et al . Dynamics of zebrafish heart regeneration using an HPLC-ESI-MS/MS approach[J]. Journal of Proteome Research, 2018, 17(3): 1300-1308. DOI:10.1021/acs.jproteome.7b00915
doi: 10.1021/acs.jproteome.7b00915
29 YE S F , ZHAO T , ZHANG W , et al . p53 isoform Δ113p53 promotes zebrafish heart regeneration by maintaining redox homeostasis[J]. Cell Death and Disease, 2020, 11: 568. DOI:10.1038/s41419-020-02781-7
doi: 10.1038/s41419-020-02781-7
30 MAYA-RAMOS L , CLELAND J , BRESSAN M , et al . Induction of the proepicardium[J]. Journal of Developmental Biology, 2013, 1(2): 82-91. DOI:10.3390/jdb1020082
doi: 10.3390/jdb1020082
31 STAINIER D Y R . Zebrafish genetics and vertebrate heart formation[J]. Nature Reviews Genetics, 2001, 2(1): 39-48. DOI:10.1038/35047564
doi: 10.1038/35047564
32 RILEY P R , SMART N . Thymosin β4 induces epicardium-derived neovascularization in the adult heart[J]. Biochemical Society Transactions, 2009, 37(6): 1218-1220. DOI:10.1042/BST0371218
doi: 10.1042/BST0371218
33 WANG J H , CAO J L , DICKSON A L , et al . Epicardial regeneration is guided by cardiac outflow tract and Hedgehog signalling[J]. Nature, 2015, 522(7555): 226-230. DOI:10.1038/nature14325
doi: 10.1038/nature14325
34 KIM J , WU Q , ZHANG Y , et al . PDGF signaling is required for epicardial function and blood vessel formation in regenerating zebrafish hearts[J]. PNAS, 2010, 107(40): 17206-17210. DOI:10.1073/pnas.0915016107
doi: 10.1073/pnas.0915016107
35 CHOI W Y , GEMBERLING M , WANG J H , et al . In vivo monitoring of cardiomyocyte proliferation to identify chemical modifiers of heart regeneration[J]. Development, 2013, 140(3): 660-666. DOI:10.1242/dev.088526
doi: 10.1242/dev.088526
36 SUGIMOTO K , HUI S P , SHENG D Z , et al . Dissection of zebrafish shha function using site-specific targeting with a Cre-dependent genetic switch[J]. eLife, 2017, 6: e24635. DOI:10.7554/eLife.24635
doi: 10.7554/eLife.24635
37 MüNCH J , GRIVAS D , GONZáLEZ-RAJAL á , et al . Notch signalling restricts inflammation and serpine1 expression in the dynamic endocardium of the regenerating zebrafish heart[J]. Development, 2017, 144: 1425-1440. DOI:10.1242/dev.143362
doi: 10.1242/dev.143362
38 LI P , CAVALLERO S , GU Y , et al . IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development[J]. Development, 2011, 138(9): 1795-1805. DOI:10.1242/dev.054338
doi: 10.1242/dev.054338
39 ZHAO L , BORIKOVA A L , BEN-YAIR R , et al . Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration[J]. PNAS, 2014, 111(4): 1403-1408. DOI:10.1073/pnas.1311705111
doi: 10.1073/pnas.1311705111
40 GáLVEZ-SANTISTEBAN M , CHEN D N , ZHANG R L , et al . Hemodynamic-mediated endocardial signaling controls in vivo myocardial reprogramming[J]. eLife, 2019, 8: e44816. DOI:10.7554/eLife.44816
doi: 10.7554/eLife.44816
41 FANG Y , GUPTA V , KARRA R , et al . Translational profiling of cardiomyocytes identifies an early Jak1/Stat3 injury response required for zebrafish heart regeneration[J]. PNAS, 2013, 110(33): 13416-13421. DOI:10.1073/pnas.1309810110
doi: 10.1073/pnas.1309810110
42 SNIDER P , STANDLEY K N , WANG J , et al . Origin of cardiac fibroblasts and the role of periostin[J]. Circulation Research, 2009, 105(10): 934-947. DOI:10.1161/CIRCRES AHA.109.201400
doi: 10.1161/CIRCRES
43 SáNCHEZ-IRANZO H , GALARDI-CASTILLA M , SANZ-MOREJóN A , et al . Transient fibrosis resolves via fibroblast inactivation in the regenerating zebrafish heart[J]. PNAS, 2018, 115(16): 4188-4193. DOI:10.1073/pnas.1716713115
doi: 10.1073/pnas.1716713115
44 CHABLAIS F , JA?WI?SKA A . The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling[J]. Development, 2012, 139(11): 1921-1930. DOI:10.1242/dev.078543
doi: 10.1242/dev.078543
45 BEVAN L , LIM Z W, VENKATESH B , et al . Specific macrophage populations promote both cardiac scar deposition and subsequent resolution in adult zebrafish[J]. Cardiovascular Research, 2020, 116(7): 1357-1371. DOI:10.1093/cvr/cvz221
doi: 10.1093/cvr/cvz221
46 LIEN C L , SCHEBESTA M , MAKINO S , et al . Gene expression analysis of zebrafish heart regeneration[J]. PLoS Biology, 2006, 4(8): 1386-1396. DOI:10.1371/journal.pbio.0040260
doi: 10.1371/journal.pbio.0040260
47 DE PREUX CHARLES A S , BISE T , BAIER F , et al . Distinct effects of inflammation on preconditioning and regeneration of the adult zebrafish heart[J]. Open Biology, 2016, 6(7): 160102. DOI:10.1098/rsob.160102
doi: 10.1098/rsob.160102
48 NIETHAMMER P , GRABHER C , LOOK A T , et al . A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249): 996-999. DOI:10.1038/nature08119
doi: 10.1038/nature08119
49 HAN P D , ZHOU X H , CHANG N N , et al . Hydrogen peroxide primes heart regeneration with a derepression mechanism[J]. Cell Research, 2014, 24(9): 1091-1107. DOI:10.1038/cr.2014.108
doi: 10.1038/cr.2014.108
50 HULSMANS M , CLAUSS S , XIAO L , et al . Macrophages facilitate electrical conduction in the heart[J]. Cell, 2017, 169(3): 510-522. DOI:10.1016/j.cell.2017.03.050
doi: 10.1016/j.cell.2017.03.050
51 LEID J , CARRELHA J , BOUKARABILA H , et al . Primitive embryonic macrophages are required for coronary development and maturation[J]. Circulation Research, 2016, 118(10): 1498-1511. DOI:10.1161/CIRCRESAHA.115.308270
doi: 10.1161/CIRCRESAHA.115.308270
52 SIM?ES F C , CAHILL T J , KENYON A , et al . Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair[J]. Nature Communications, 2020, 11(1): 600. DOI:10.1038/s41467-019-14263-2
doi: 10.1038/s41467-019-14263-2
53 DE COUTO G . Macrophages in cardiac repair: environmental cues and therapeutic strategies[J]. Experimental Molecular Medicine, 2019, 51(12): 159. DOI:10.1038/s12276-019-0269-4
doi: 10.1038/s12276-019-0269-4
54 JOSEFOWICZ S Z , LU L F , RUDENSKY A Y . Regulatory T cells: mechanisms of differentiation and function[J]. Annual Review of Immunology, 2012, 30: 531-564. DOI:10 .1146/annurev.immunol.25.022106.141623
doi: 10
55 HUI S P , SHENG D Z , SUGIMOTO K , et al . Zebrafish regulatory T cells mediate organ-specific regenerative programs[J]. Developmental Cell, 2017, 43(6): 659-672. DOI:10.1016/j.devcel.2017.11.010
doi: 10.1016/j.devcel.2017.11.010
[1] 虞海燕  方青  陈大方  程浩. 波长585 nm脉冲染料激光对成纤维细胞增殖以及其前胶原基因mRNA表达的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 783-787.
[2] 薛良义  钱凯先. 斑马鱼Hoxa-11a基因克隆及序列分析[J]. 浙江大学学报(农业与生命科学版), 2003, 29(4): 433-438.