Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 105-116    DOI: 10.3785/j.issn.1008-9209.2022.02.142
动物科学与动物医学     
海参肽与肉苁蓉组合物对急性运动小鼠激素水平及睾丸抗氧化损伤的影响
骆贤亮1(),刘旺鑫1,王晶1,杜鹃2,3,冯凤琴1()
1.浙江大学生物系统工程与食品科学学院, 浙江 杭州 310058
2.杭州康源食品科技有限公司, 浙江 杭州 310003
3.浙江诺衍生物科技有限公司, 浙江 湖州 313000
Effects of the combination of sea cucumber peptide and Cistanche deserticola on hormone regulation and testicular anti-oxidative damage in acute-exercising mice
Xianliang LUO1(),Wangxin LIU1,Jing WANG1,Juan DU2,3,Fengqin FENG1()
1.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hangzhou Kangyuan Food Technology Co. , Ltd. , Hangzhou 310003, Zhejiang, China
3.Zhejiang Nuoyan Biotechnology Co. , Ltd. , Huzhou 313000, Zhejiang, China
 全文: PDF(5784 KB)   HTML
摘要:

为初步探究海参肽与肉苁蓉组合物对急性运动小鼠激素水平及睾丸抗氧化损伤的影响,将小鼠随机分为空白组、对照组、低剂量组合物组(0.3 mg/g)、中剂量组合物组(0.6 mg/g)和高剂量组合物组(2.0 mg/g),用不同剂量的海参肽与肉苁蓉组合物连续给小鼠灌胃42 d,采用急性力竭游泳造模,并于第45天进行交配实验,记录小鼠性行为学参数,并测定其激素水平及抗氧化相关指标。结果表明:组合物中海参肽与肉苁蓉的最佳质量比为2∶1。急性力竭游泳导致小鼠体内出现能量消耗和代谢产物堆积(P<0.05),而海参肽与肉苁蓉组合物可不同程度地延长小鼠的急性力竭游泳时间,降低其体内乳酸和血尿素氮的含量。急性力竭游泳会引起小鼠睾酮和雌二醇含量下降,但中、高剂量组合物使两者含量显著提升(P<0.05);同时,中剂量组合物显著降低了小鼠促卵泡激素和鸢尾素水平(P<0.01),并显著提高了其促肾上腺皮质激素含量(P<0.05);此外,各剂量组合物明显提高了小鼠精子活力,并且显著降低了小鼠精子畸形率,增强了睾丸组织的总抗氧化能力(P<0.05)。综上所述,在小鼠急性力竭游泳模型中,海参肽与肉苁蓉组合物具有延缓疲劳症状产生、提高睾酮水平、减少精子和睾丸组织氧化损伤的生理活性。本研究为激素水平调节相关功能食品的开发与应用提供了科学依据。

关键词: 海参肽肉苁蓉急性力竭游泳激素氧化损伤    
Abstract:

The effects of the combination of sea cucumber peptide and Cistanche deserticola (SCPCD) on the hormone regulation and testicular anti-oxidative damage of acute-exercising mice were preliminarily explored in this study. The mice were randomly divided into five groups, including the blank group, the control group, SCPCD-low dose group (SCPCD-L) (0.3 mg/g), SCPCD-medium dose group (SCPCD-M) (0.6 mg/g), and SCPCD-high dose group (SCPCD-H) (2.0 mg/g), and all the mice received continuously intragastric administration by different doses of SCPCD for 42 d. An acute exhaustive swimming (AES) model was conducted, and a mating test was carried out on the 45th day. The sexual behavior ability parameters, hormone levels, and anti-oxidative related indexes were finally measured. The results showed that the optimal mass ratio of sea cucumber peptide and Cistanche deserticola in combination of them was 2∶1. AES led to the energy expenditure and accumulation of metabolites in mice (P<0.05), but the acute exhaustive swimming time was prolonged and the contents of lactic acid and blood urea nitrogen were reduced by SCPCD treatments of mice. Besides, AES caused decreases in testosterone and estrogen contents, but they were significantly increased in the SCPCD-M and SCPCD-H (P<0.05). The levels of follicle-stimulating hormone and irisin were significantly reduced (P<0.01) in SCPCD-M, while the adrenocorticotropic hormone content was increased (P<0.05). In addition, the sperm malformation rate decreased in SCPCD treatment, while the sperm motility and total antioxidant capacity of testis were significantly improved (P<0.05). In summary, the SCPCD presented the physiological activities on delaying fatigue, improving testosterone level, and reducing the oxidative damage of sperm and testicular tissue in AES model. These results provide a scientific basis for the development and application of functional foods related to hormone regulation.

Key words: sea cucumber peptide    Cistanche deserticola    acute exhaustive swimming    hormone    oxidative damage
收稿日期: 2022-02-14 出版日期: 2023-02-25
CLC:  TS201.2  
基金资助: 浙江大学科技合作项目“水产动物源功能蛋白肽产品研究开发”(K横20182914)
通讯作者: 冯凤琴     E-mail: lxlsky008@163.com;fengfq@zju.edu.cn
作者简介: 骆贤亮(https://orcid.org/0000-0003-4162-1316),E-mail:lxlsky008@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
骆贤亮
刘旺鑫
王晶
杜鹃
冯凤琴

引用本文:

骆贤亮,刘旺鑫,王晶,杜鹃,冯凤琴. 海参肽与肉苁蓉组合物对急性运动小鼠激素水平及睾丸抗氧化损伤的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 105-116.

Xianliang LUO,Wangxin LIU,Jing WANG,Juan DU,Fengqin FENG. Effects of the combination of sea cucumber peptide and Cistanche deserticola on hormone regulation and testicular anti-oxidative damage in acute-exercising mice. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 105-116.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.02.142        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/105

图1  海参肽分子量、氨基酸组成以及海参肽与肉苁蓉组合物的抗氧化能力
图2  实验流程图和小鼠体质量及急性力竭游泳时间图A中空白组不做急性力竭游泳训练,但参与交配实验。CK:对照组;SCPCD-L:低剂量海参肽与肉苁蓉组合物组;SCPCD-M:中剂量海参肽与肉苁蓉组合物组;SCPCD-H:高剂量海参肽与肉苁蓉组合物组(下同)。*表示实验组与对照组相比在P<0.05水平差异有统计学意义。

组别

Group

脏器系数 Organ coefficient

肝脏

Liver

肾脏

Kidney

脾脏

Spleen

睾丸

Testis

精囊腺

Seminal vesicle

附睾

Epididymis

阴茎

Penis

空白组 Blank group4.48±0.291.54±0.140.26±0.070.77±0.070.64±0.150.34±0.050.10±0.02
对照组 CK4.60±0.491.53±0.070.28±0.050.81±0.080.64±0.160.35±0.050.09±0.03
低剂量组合物组 SCPCD-L4.84±0.261.58±0.180.30±0.080.78±0.130.76±0.170.36±0.080.10±0.02
中剂量组合物组 SCPCD-M4.80±0.281.61±0.130.30±0.070.81±0.100.73±0.130.36±0.070.11±0.02
高剂量组合物组 SCPCD-H4.51±0.441.55±0.130.24±0.050.83±0.120.68±0.050.35±0.060.11±0.02
表1  小鼠脏器系数 (%)

组别

Group

肝糖原

Hepatic glycogen/(mg/g)

肌糖原

Muscle glycogen/(mg/g)

血尿素氮

BUN/(mmol/L)

乳酸

LA/(mmol/L)

一氧化氮

NO/(μmol/L)

空白组 Blank group0.41±0.060.61±0.093.62±0.615.09±0.4658.12±11.78
对照组 CK0.29±0.11#0.32±0.06##4.39±0.70#5.82±0.38#47.38±5.65
低剂量组合物组 SCPCD-L0.29±0.07#0.54±0.23*3.29±0.36**4.47±0.72**53.09±7.39
中剂量组合物组 SCPCD-M0.37±0.090.32±0.08##3.73±0.455.01±0.55*54.18±13.25
高剂量组合物组 SCPCD-H0.27±0.09#0.75±0.17**3.41±0.54**4.86±0.43**61.14±18.53
表2  小鼠抗疲劳相关指标

组别

Group

骑跨潜伏期

Mounting latency/s

骑跨次数

Mounting frequency

射精次数

Ejaculation frequency

插入次数

Intromission frequency

空白组 Blank group568.20±335.304.86±3.843.60±1.8285.00±57.33
对照组 CK532.20±126.405.00±1.382.50±0.9653.71±20.63
低剂量组合物组 SCPCD-L494.00±118.709.62±2.745.17±1.42104.50±19.29
中剂量组合物组 SCPCD-M398.70±96.408.14±2.584.75±1.49128.20±71.03
高剂量组合物组 SCPCD-H564.80±132.607.00±1.513.14±0.63118.00±35.48
表3  小鼠性行为学参数
图3  小鼠血清激素水平
图4  附睾组织病理学(A)、精子形态(B)及精子畸形率(C)
图5  睾丸组织病理分析
图6  小鼠睾丸抗氧化指标
1 郭三维,琚建军,李铮.男性性腺功能减退症的认识与对策[J].上海医学,2021,44(5):302-306. DOI:10.19842/j.cnki.issn.0253-9934.2021.05.004
GUO S W, JU J J, LI Z. Understanding and countermeasures of male hypogonadism[J]. Shanghai Medical Journal, 2021, 44(5): 302-306. (in Chinese with English abstract)
doi: 10.19842/j.cnki.issn.0253-9934.2021.05.004
2 NUTSCH V L, WILL R G, TOBIANSKY DJ, et al. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats[J]. Hormones and Behavior, 2017, 96: 4-12. DOI: 10.1016/j.yhbeh.2017.08.008
doi: 10.1016/j.yhbeh.2017.08.008
3 SGRÒ P, LUIGI L D. Sport and male sexuality[J]. Journal of Endocrinological Investigation, 2017, 40(9): 911-923. DOI: 10.1007/s40618-017-0652-8
doi: 10.1007/s40618-017-0652-8
4 COLSON M H, CUZIN B, FAIX A, et al. Current epidemiology of erectile dysfunction, an update[J]. Sexologies, 2018, 27(1): e7-e13. DOI: 10.1016/j.sexol.2018.01.018
doi: 10.1016/j.sexol.2018.01.018
5 LI Z M, LIU N, JIANG Y P, et al. Vitexin alleviates streptozotocin-induced sexual dysfunction and fertility impairments in male mice via modulating the hypothalamus-pituitary-gonadal axis[J]. Chemico-Biological Interactions, 2019, 297(5): 119-129. DOI: 10.1016/j.cbi.2018.10.013
doi: 10.1016/j.cbi.2018.10.013
6 ZHANG W W, WEI Y F, CAO X X, et al. Enzymatic preparation of Crassostrea oyster peptides and their promoting effect on male hormone production[J]. Journal of Ethnophar-macology, 2021, 264(10): 113382. DOI: 10.1016/j.jep.2020.113382
doi: 10.1016/j.jep.2020.113382
7 李明亮,姜盛,郭颖,等.紫苏籽肽对环磷酰胺致性功能损伤大鼠的改善作用[J].食品科学,2021,42(5):177-186. DOI: 10.7506/spkx1002-6630-20200311-180
LI M L, JIANG S, GUO Y, et al. Ameliorative effect of Perilla seed peptide on cyclophosphamide-induced sexual function impairment of rats[J]. Food Science, 2021, 42(5): 177-186. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20200311-180
8 ZHANG Z R, SU G W, ZHOU F B, et al. Alcalase-hydrolyzed oyster (Crassostrea rivularis) meat enhances antioxidant and aphrodisiac activities in normal male mice[J]. Food Research International, 2019, 120: 178-187. DOI: 10.1016/j.foodres.2019.02.033
doi: 10.1016/j.foodres.2019.02.033
9 XU C, ZHANG R, WEN Z Y. Bioactive compounds and biological functions of sea cucumbers as potential functional foods[J]. Journal of Functional Foods, 2018, 49: 73-84. DOI: 10.1016/j.jff.2018.08.009
doi: 10.1016/j.jff.2018.08.009
10 宋淑亮,王欢,梁浩,等.海参肽的分离纯化及其对NIH/3T3细胞胶原蛋白分泌的影响[J].现代食品科技,2017,33(3):22-28. DOI:10.13982/j.mfst.1673-9078.2017.3.004
SONG S L, WANG H, LIANG H, et al. Isolation and purification of sea cucumber peptide and its impact on the secretion of collagen by NIH/3T3 cell[J]. Modern Food Science and Technology, 2017, 33(3): 22-28. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2017.3.004
11 LIN L Z, YANG K, ZHENG L, et al. Anti-aging effect of sea cucumber (Cucumaria frondosa) hydrolysate on fruit flies and D-galactose-induced aging mice[J]. Journal of Functional Foods, 2018, 47: 11-18. DOI: 10.1016/j.jff.2018.05.033
doi: 10.1016/j.jff.2018.05.033
12 YE J, SHEN C H, HUANG Y Y, et al. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model[J]. Journal of Science Food and Agriculture, 2017, 97(13): 4548-4556. DOI: 10.1002/jsfa.8322
doi: 10.1002/jsfa.8322
13 CAI N, LUO W Q, YAO L J, et al. Activation of murine RAW264.7 macrophages by oligopeptides from sea cucumber (Apostichopus japonicus) and its molecular mechanisms[J]. Journal of Functional Foods, 2020, 75: 104229. DOI: 10.1016/j.jff.2020.104229
doi: 10.1016/j.jff.2020.104229
14 XU X M, LIANG R, LI D M, et al. Evaluation of sea cucumber peptides-assisted memory activity and acetylation modification in hippocampus of test mice based on scopolamine-induced experimental animal model of memory disorder[J]. Journal of Functional Foods, 2020, 68: 103909. DOI: 10.1016/j.jff.2020.103909
doi: 10.1016/j.jff.2020.103909
15 王启新.肉苁蓉抗疲劳与促生殖作用的补肾阳活性筛选与机制初探[D].北京:北京中医药大学,2020.
WANG Q X. Screening and mechanism of tonifying kidney-yang activity of Cistanche deserticola for anti-fatigue and promoting reproduction[D]. Beijing: Beijing University of Chinese Medicine, 2020. (in Chinese with English abstract)
16 LUO X L, LIU W X, ZHONG H, et al. Synergistic effect of combined oyster peptide and ginseng extracts on anti-exercise-fatigue and promotion of sexual interest activity in male ICR mice[J]. Journal of Functional Foods, 2021, 86: 104700. DOI: 10.1016/j.jff.2021.104700
doi: 10.1016/j.jff.2021.104700
17 骆贤亮,晏永球,冯凤琴.牡蛎肽与人参提取物配伍提高雄性小鼠性功能及抗疲劳作用研究[J].食品工业科技,2022,43(1):366-374. DOI:10.13386/j.issn1002-0306.2021030384
LUO X L, YAN Y Q, FENG F F. Effect of combined oyster peptide and ginseng extracts on improvement of sexual function and anti-fatigue in male mice[J]. Science and Technology of Food Industry, 2022,43(1): 366-374. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2021030384
18 王振,李锐,阎政礼,等.腐霉利对雄性青春期小鼠睾丸和精子的损伤[J].卫生研究,2020,49(6):949-954. DOI:10.19813/j.cnki.weishengyanjiu.2020.06.013
WANG Z, LI R, YAN Z L, et al. Injury of procymidone on testis and sperm in the male adolescent mice [J]. Journal of Hygiene Research, 2020, 49(6): 949-954. (in Chinese with English abstract)
doi: 10.19813/j.cnki.weishengyanjiu.2020.06.013
19 范甜甜,杨治峰,薄存香,等.农达对小鼠睾丸组织损伤和氧化应激的影响[J].现代预防医学,2017,45(2):319-323.
FAN T T, YANG Z F, BO C X, et al. Effect of roundup on morphology of testis and oxidative stress in mice[J]. Modern Preventive Medicine, 2017, 45(2): 319-323. (in Chinese with English abstract)
20 MIN S G, JO Y J, PARK S H. Potential application of static hydrothermal processing to produce the protein hydrolysates from porcine skin by-products[J]. LWT-Food Science Technology, 2017, 83: 18-25. DOI: 10.1016/j.lwt.2017.04.073
doi: 10.1016/j.lwt.2017.04.073
21 HU M, DU J, DU L D, et al. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice[J]. Journal of Functional Foods, 2020, 65: 103725. DOI: 10.1016/j.jff.2019.103725
doi: 10.1016/j.jff.2019.103725
22 PASIAKOS S M, BERRYMAN C E, KARL J P, et al. Effects of testosterone supplementation on body composition and lower-body muscle function during severe exercise- and diet-induced energy deficit: a proof-of-concept, single centre, randomised, double-blind, controlled trial[J]. eBioMedicine, 2019, 46: 411-422. DOI: 10.1016/j.ebiom.2019.07.059
doi: 10.1016/j.ebiom.2019.07.059
23 MA L L, SHANG Y N, ZHU Y D, et al. Study on microencapsulation of Lactobacillus plantarum LIP-1 by emulsification method[J]. Journal of Food Process Engineering, 2020, 43(8): e13437. DOI: 10.1111/jfpe.13437
doi: 10.1111/jfpe.13437
24 LI J, SUN Q R, MENG Q R, et al. Anti-fatigue activity of polysaccharide fractions from Lepidium meyenii Walp. (maca)[J]. International Journal of Biological Macromolecules, 2017, 95: 1305-1311. DOI: 10.1016/j.ijbiomac.2016.11.031
doi: 10.1016/j.ijbiomac.2016.11.031
25 ZHANG Y Y, RYU B M, CUI Y H, et al. A peptide isolated from Hippocampus abdominalis improves exercise performance and exerts anti-fatigue effects via AMPK/PGC-1α pathway in mice[J]. Journal of Functional Foods, 2019, 61: 103489. DOI: 10.1016/j.jff.2019.103489
doi: 10.1016/j.jff.2019.103489
26 罗齐军,鲁顺保,李红,等.牡蛎多肽对长期大负荷训练大鼠血睾酮、LH和StAR mRNA表达的影响[J].江西师范大学学报(自然科学版),2013,37(6):611-616. DOI:10.16357/j.cnki.issn1000-5862.2013.06.013
LUO Q J, LU S B, LI H, et al. The effect of oyster peptides supplementation serum testosterone, LH content and StAR mRNA expression in rats during the long-term and high loading training[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2013, 37(6): 611-616. (in Chinese with English abstract)
doi: 10.16357/j.cnki.issn1000-5862.2013.06.013
27 KOSKENNIEMI J J, VIRTANEN H E, TOPPARI J. Testicular growth and development in puberty[J]. Current Opinion in Endocrinology & Diabetes and Obesity, 2017, 24(3): 215-224. DOI: 10.1097/MED.0000000000000339
doi: 10.1097/MED.0000000000000339
28 KRAEMER W J, RATAMESS N A, HYMER W C, et al. Growth hormone(s), testosterone, insulin-like growth factors, and cortisol: roles and integration for cellular development and growth with exercise[J]. Frontiers in Eedocrinology, 2020, 11: 33. DOI: 10.3389/fendo.2020.00033
doi: 10.3389/fendo.2020.00033
29 ROSSETTI M L, STEINER J L, GORDON B S. Androgen-mediated regulation of skeletal muscle protein balance[J]. Molecular and Cellular Endocrinology, 2017, 447: 35-44. DOI: 10.1016/j.mce.2017.02.031
doi: 10.1016/j.mce.2017.02.031
30 马淑慧,孙永欣,李学军,等.柞蚕蛹多肽对ICR雄性小鼠性功能的影响[J].蚕业科学,2021,47(5):476-481. DOI:10.13441/j.cnki.cykx.2021.05.011
MA S H, SUN Y S, LI X J, et al. Effect of Antheraea pernyi pupa polypeptide on sexual function of ICR male mice[J]. Science of Sericulture, 2021, 47(5): 476-481. (in Chinese with English abstract)
doi: 10.13441/j.cnki.cykx.2021.05.011
31 AJDŽANOVIĆ V Z, FILIPOVIĆ B R, ŠOŠIĆ JURJEVIĆ B T, et al. Testosterone supplementation, glucocorticoid milieu and bone homeostasis in the ageing male[J]. Fundamental & Clinical Pharmacology, 2017, 31(4): 372-382. DOI: 10.1111/fcp.12277
doi: 10.1111/fcp.12277
32 胡顺宇,唐显平,杨锋,等.鸢尾素在运动改善骨代谢中的作用研究[J].中国骨质疏松杂志,2020,26(10):1555-1560. DOI:10.3969/j.issn.1006-7108.2020.10.032
HU S Y, TANG X P, YANG F, et al. Study on the role of irisin in improving bone metabolism by exercise[J]. Chinese Journal of Osteoporosis, 2020, 26(10): 1555-1560. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-7108.2020.10.032
33 TEKIN S, BEYTUR A, ERDEN Y, et al. Effects of intracerebroventricular administration of irisin on the hypothalamus-pituitary-gonadal axis in male rats[J]. Journal of Cellular Physiology, 2019, 234(6): 8815-8824. DOI: 10.1002/jcp.27541
doi: 10.1002/jcp.27541
34 KLOSTERHOFF R R, KANAZAWA L K S, FURLANETTO A L D M, et al. Anti-fatigue activity of an arabinan-rich pectin from acerola (Malpighia emarginata)[J]. International Journal of Biological Macromolecules, 2018, 109: 1147-1153. DOI: 10.1016/j.ijbiomac.2017.11.105
doi: 10.1016/j.ijbiomac.2017.11.105
35 郭富双,陈圣杰,杨春兰,等.复方辣木颗粒剂影响雄性小鼠性功能的实验研究[J].蛇志,2019,31(1):23-25. DOI:10.3969/j.issn.1001-5639.2019.01.008
GUO F S, CHEN S J, YANG C L, et al. Experimental study on the effect of compound moringa granules on sexual function of male mice[J]. Journal of Snake, 2019, 31(1): 23-25. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-5639.2019.01.008
36 王晓琛,刘强.精子活性氧与运动及受精的关系[J].中国男科学杂志,2021,35(4):65-67.
WANG X C, LIU Q. The relationship between sperm reactive oxygen species and motility and fertilization[J]. Chinese Journal of Andrology, 2021, 35(4): 65-67. (in Chinese)
37 JIAO N, CHEN Y P, ZHU Y H, et al. Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway[J]. Life Sciences, 2020, 256: 116736. DOI: 10.1016/j.lfs.2019.116736
doi: 10.1016/j.lfs.2019.116736
38 NJOKU R C, ABARIKWU S O, UWAKWE A A, et al. Dietary fluted pumpkin seeds induce reversible oligospermia and androgen insufficiency in adult rats[J]. Systems Biology in Reproductive Medicine, 2019, 65(6): 437-450. DOI: 10.1080/19396368.2019.1612482
doi: 10.1080/19396368.2019.1612482
39 LI R, MENG X H, ZHANG Y, et al. Testosterone improves erectile function through inhibition of reactive oxygen species generation in castrated rats[J]. PeerJ, 2016, 4: e2000. DOI: 10.7717/peerj.2000
doi: 10.7717/peerj.2000
40 党瑜慧.芹菜素对丙烯腈致雄性大鼠亚慢性生殖损伤保护作用的研究[D].甘肃,兰州:兰州大学,2019.
DANG Y H. Protective effects of apigenin against acrylonitrile-induced subchronic reproduction injury in male rats[D]. Lanzhou, Gansu: Lanzhou University, 2019. (in Chinese with English abstract)
[1] 李艾凝,姜百惠,李桂新,丁忠杰,郑绍建. 乙烯调控植物营养缺乏胁迫响应的分子机制[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 14-22.
[2] 白圣懿,王晓敏,刘文娟,程国新,郭猛,姚文孔,高艳明,李建设. 不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 31-44.
[3] 金晶,闾怡清,何卫中,疏再发,叶俭慧,梁月荣. 不同遮阴处理对茶树叶片主要植物激素生物合成的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 45-54.
[4] 陈耘蕊,毛志君,李兆伟,范凯. 植物蛋白磷酸酶2C结构和功能的研究现状与进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 11-20.
[5] 刘欣,陈勇,沈立荣. 蜂王浆主蛋白对围绝经期小鼠生殖功能的保护作用[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 751-759.
[6] 柳梦琪, 张广路, 郭长权, 杨婷宇, 米玉玲. 牛磺酸缓解镉诱导的鸡胚睾丸细胞氧化损伤的核转录因子E2 相关因子2/血红素加氧酶-1途径[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 619-628.
[7] 刘甜, 陈晓宇, 朱志伟, 于福先, 黄菁, 贾若欣, 石放雄, 潘建治. 卵泡刺激素剂量依赖性表达基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 162-171.
[8] 侯涌, 侯艳彬, 姚垒, 戴滨阳, 钱利纯, 范京辉. 冰鲜鱼和膨化饲料中不同糖类水平对乌鳢生长性能及糖代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 199-208.
[9] 童心,胡柏杨,陈兴财,张雪莲,赵永志,谷成刚,李艳霞. 类固醇雌激素的环境暴露及其迁移转化[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 734-746.
[10] 龙诗韵,姜冬梅,陈咨余,管成,易治鑫,康波. 外源性亚精胺对鼠卵巢生殖激素受体基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(2): 247-252.
[11] 李丽, 徐琪, 陈阳, 黄学涛, 李柳萌, 陶仲连, 陈国宏. 绍兴鸭生长激素基因多态性与生长性能关联性分析[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 365-370.
[12] 张伟, 张君胜, 张尧, 王利红. 湖羊促性腺激素释放激素受体基因(GnRHR)在消化系统中的表达谱分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 387-392.
[13] 戴伟, 金成官, 傅玲琳, 杜华华, 许梓荣. 饲料铅暴露对罗非鱼肝胰脏抗氧化防御系统及显微结构的影响[J]. 浙江大学学报(农业与生命科学版), 2009, 35(3): 350-354.
[14] 章世元, 俞路, 王雅倩, 林显华, 汪益峰. 鸡甲状旁腺素基因质粒对蛋鸡蛋壳质量和激素水平的调控研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(2): 201-208.
[15] 马文强 冯杰 许梓荣. N-甲基-D-天冬氨酸(NMDA)对肥育猪血清生长激素水平及腺垂体生长激素mRNA表达的影响[J]. 浙江大学学报(农业与生命科学版), 2008, 34(3): 322-326.