Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (1): 31-44    DOI: 10.3785/j.issn.1008-9209.2022.03.081
园艺科学     
不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选
白圣懿1(),王晓敏1,2,3,4(),刘文娟1,程国新1,2,3,4,郭猛1,2,3,4,姚文孔1,2,3,4,高艳明1,2,3,4,李建设1,2,3,4
1.宁夏大学农学院,宁夏 银川 750021
2.宁夏优势特色作物现代分子育种重点实验室,宁夏 银川 750021
3.宁夏现代设施园艺工程技术研究中心,宁夏 银川 750021
4.宁夏设施园艺技术创新中心(宁夏大学),宁夏 银川 750021
Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones
Shengyi BAI1(),Xiaomin WANG1,2,3,4(),Wenjuan LIU1,Guoxin CHENG1,2,3,4,Meng GUO1,2,3,4,Wenkong YAO1,2,3,4,Yanming GAO1,2,3,4,Jianshe LI1,2,3,4
1.School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
2.Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, Ningxia, China
3.Ningxia Modern Facility Horticulture Engineering and Technology Research Center, Yinchuan 750021, Ningxia, China
4.Ningxia Facility Horticulture Technology Innovation Center (Ningxia University), Yinchuan 750021, Ningxia, China
 全文: PDF(2754 KB)   HTML
摘要:

为筛选出在不同激素诱导下番茄中较为稳定的内参基因,本研究以脱落酸(abscisic acid, ABA)、茉莉酸甲酯(methyl jasmonate, MeJA)、水杨酸(salicylic acid, SA)3种外源激素分别诱导处理0、24、48、120 h的感病番茄品种‘Moneymaker’(MM)和抗病番茄自交系62579叶片为试验材料,通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, qRT-PCR)进行扩增,利用geNorm、NormFinder和BestKeeper 3个软件分析EF1αL33ActUbiGAPDHUKCACTIP41这8个番茄候选内参基因的表达稳定性。结果表明,8个候选内参基因的平均CT值为26~34。综合3个软件的分析结果发现,在ABA诱导下,番茄中较稳定表达的内参基因为L33Ubi;在MeJA诱导下,番茄中较稳定表达的内参基因为L33EF1α;在SA诱导下,番茄中较稳定表达的内参基因为EF1αL33。综上所述,L33基因是番茄在不同激素诱导下表达最稳定的候选内参基因。本研究筛选的最稳定内参基因将为后续番茄响应外源激素处理的差异基因表达分析和分子机制研究提供校准依据。

关键词: 番茄激素诱导实时荧光定量聚合酶链反应内参基因    
Abstract:

Screening of stable reference genes was significant when the real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) was used to study gene expression. To identify the most stable reference genes in tomato induced by different hormones, the leaves of susceptible tomato ‘Moneymaker’ (MM) and resistant tomato inbred line 62579, which were treated with abscisic acid (ABA), methyl jasmonate (MeJA), and salicylic acid (SA) for 0, 24, 48, and 120 h, respectively, were used for qRT-PCR amplification. In the current study, the expression stabilities of eight tomato candidate reference genes, including EF1α, L33, Act, Ubi, GAPDH, UK, CAC, and TIP41, were analyzed using geNorm, NormFinder, and BestKeeper softwares. The results revealed that the average CT values of eight candidate reference genes ranged from 26 to 34. Based on the data from these softwares, L33 and Ubi, L33 and EF1α,as well as EF1α and L33 were considered to be the stably expressed reference genesin tomato induced by ABA, MeJA, and SA, respectively. In conclusion, L33 is the most stably expressed gene among all studied candidate reference genes in tomato induced by different hormones. The most stable reference genes screened in this study will provide a calibration basis for the expression analyses of differential genes and the research on molecular mechanisms in tomato response to exogenous hormone treatments in the future.

Key words: tomato    hormone induction    real-time fluorescent quantitative polymerase chain reaction (qRT-PCR)    reference gene
收稿日期: 2022-03-08 出版日期: 2023-03-07
CLC:  S641.2  
基金资助: 国家自然科学基金项目(31860561);宁夏回族自治区农业特色优势产业育种专项(NXNYYZ20200104);宁夏回族自治区重点研发计划项目(2019BBF02022)
通讯作者: 王晓敏     E-mail: baishengyi0602@163.com;wangxiaomin_1981@163.com
作者简介: 白圣懿(https://orcid.org/0000-0002-9784-6787),E-mail:baishengyi0602@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白圣懿
王晓敏
刘文娟
程国新
郭猛
姚文孔
高艳明
李建设

引用本文:

白圣懿,王晓敏,刘文娟,程国新,郭猛,姚文孔,高艳明,李建设. 不同激素处理下番茄实时荧光定量聚合酶链反应内参基因的筛选[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 31-44.

Shengyi BAI,Xiaomin WANG,Wenjuan LIU,Guoxin CHENG,Meng GUO,Wenkong YAO,Yanming GAO,Jianshe LI. Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 31-44.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.03.081        https://www.zjujournals.com/agr/CN/Y2023/V49/I1/31

序号No.

基因名称

Gene name

基因符号

Gene

symbol

引物序列(5→3

Primer sequence (5→3)

产物长度

Product

length/bp

文献

Reference

1Elongation factor 1αEF1αF: ACAGGCGTTCAGGTAAGGAA120[27]
R: GAGGGTATTCAGCAAAGGTCTC
250S ribosomal protein L33L33F: GGGAAGAGGCTGGGATACATC138[9]
R: AGGAGGCAAATTGGACTTGAAC
3β-actinActF: GCTCCACCAGAGAGGAAATACAGT107[9]
R: CATACTCTGCCTTTGCAATCCA
4UbiquitinUbiF: GGACGGACGTACTCTAGCTGAT134[27]
R: AGCTTTCGACCTCAAGGGTA
5

Glyceraldehyde-3-phosphate

dehydrogenase

GAPDHF: ACCACAAATTGCCTTGCTCCCTTG110[28]
R: ATCAACGGTCTTCTGAGTGGCTGT
6Uridylate kinaseUKF: TGGTAAGGGCACCCAATGTGCTAA114[29]
R: ATCATCGTCCCATTCTCGGAACCA
7Clathrin adaptor complexes medium subunitCACF: CCTCCGTTGTGATGTAACTGG173[28]
R: ATTGGTGGAAAGTAACATCATCG
8TAP42-interacting proteinTIP41F: ATGGAGTTTTTGAGTCTTCTGC235[23]
R: GCTGCGTTTCTGGCTTAGG
表1  番茄候选内参基因的引物信息
图1  不同激素诱导处理下番茄RNA完整性检测结果A.感病番茄MM;B.抗病番茄62579。M:DL2000分子标志物。
图2  番茄8个候选内参基因PCR产物琼脂糖凝胶电泳分析M:DL2000分子标志物。
图3  番茄8个候选内参基因的 CT 值分布情况
图4  geNorm软件分析8个候选内参基因表达稳定值( M )A. ABA诱导处理;B. MeJA诱导处理;C. SA诱导处理。
图5  geNorm软件分析8个候选内参基因配对变异值( V )A. ABA诱导处理;B. MeJA诱导处理;C. SA诱导处理。

处理

Treatment

排序

Ranking

MM62579MM&62579

基因

Gene

表达稳定值

S

基因

Gene

表达稳定值

S

基因

Gene

表达稳定值

S

ABA1L330.048Ubi0.094Act0.220
2Act0.159EF1α0.113L330.222
3Ubi0.166L330.184CAC0.269
4CAC0.190UK0.202Ubi0.272
5GAPDH0.256GAPDH0.220UK0.290
6UK0.271Act0.263EF1α0.305
7EF1α0.433CAC0.309GAPDH0.319
8TIP410.544TIP410.636TIP410.574
MeJA1EF1α0.124L330.144EF1α0.134
2L330.137UK0.148L330.136
3Ubi0.159EF1α0.159UK0.239
4CAC0.200TIP410.222Ubi0.259
5GAPDH0.230Ubi0.224TIP410.281
6UK0.266GAPDH0.367GAPDH0.299
7TIP410.339Act0.603Act0.570
8Act0.539CAC0.804CAC0.593
SA1L330.042EF1α0.063EF1α0.142
2EF1α0.093L330.081Ubi0.170
3Ubi0.179Act0.169L330.176
4GAPDH0.207Ubi0.175Act0.234
5Act0.293UK0.195UK0.283
6CAC0.296GAPDH0.225CAC0.304
7UK0.358CAC0.323GAPDH0.349
8TIP410.534TIP410.507TIP410.509
表2  NormFinder软件分析结果
参量 Parameter12345678
MM
基因 GeneActL33EF1αUKCACUbiTIP41GAPDH
几何平均数 Geometric mean29.1927.9726.6333.1430.1427.0931.2230.77
最小值 Minimum28.7327.6426.1332.4629.9026.7930.5130.47
最大值 Maximum29.7428.2627.3933.6130.2927.3632.3231.08
标准差 s0.350.240.470.370.120.150.550.16
变异系数 CV/%1.200.851.781.110.410.551.750.52
皮尔逊相关系数 r0.9870.9210.8010.7140.6410.6210.4930.096
62579
基因 GeneUbiL33GAPDHEF1αUKCACActTIP41
几何平均数 Geometric mean27.5229.4731.2627.7134.6331.4530.2732.30
最小值 Minimum26.9128.7730.6526.8733.8130.3029.8831.71
最大值 Maximum28.1730.4832.0028.6235.4732.4130.8232.81
标准差 s0.370.530.370.460.600.730.280.46
变异系数 CV/%1.341.791.181.671.742.310.911.43
皮尔逊相关系数 r0.9980.9850.9840.9810.9540.9530.8000.733
MM&62579
基因 GeneL33UKCACEF1αActUbiGAPDHTIP41
几何平均数 Geometric mean28.7133.8730.7927.1629.7027.3031.0131.75
最小值 Minimum27.6432.4629.9026.1328.7326.7930.4730.51
最大值 Maximum30.4835.4732.4128.6230.6528.1732.0032.81
标准差 s0.750.760.780.670.520.330.350.69
变异系数 CV/%2.622.252.542.461.761.201.142.17
皮尔逊相关系数 r0.9870.9590.9580.9430.9110.9000.8570.786
表3  BestKeeper软件分析8个候选内参基因在ABA诱导下的表达稳定性
参量 Parameter12345678
MM
基因 GeneActEF1αUKL33GAPDHCACUbiTIP41
几何平均数 Geometric mean29.7226.3333.3227.7330.5930.1926.5830.52
最小值 Minimum28.6526.1032.7227.4430.3330.0126.3930.18
最大值 Maximum30.4526.6533.7228.0930.9430.3726.8531.03
标准差 s0.620.160.300.180.240.180.130.30
变异系数 CV/%2.080.600.900.660.800.580.500.97
皮尔逊相关系数 r0.8730.6260.6140.584-0.298-0.385-0.441-0.610
62579
基因 GeneTIP41L33CACUKEF1αUbiGAPDHAct
几何平均数 Geometric mean27.1424.5427.2829.7623.0522.8727.4226.74
最小值 Minimum26.3324.1326.3329.2822.8122.1626.8726.22
最大值 Maximum28.1425.0329.3230.0023.3223.3527.8927.57
标准差 s0.530.291.000.240.220.440.350.44
变异系数 CV/%1.951.173.680.810.931.921.271.63
皮尔逊相关系数 r0.9910.9760.9140.8800.8650.8290.617-0.203
MM&62579
基因 GeneL33EF1αUbiUKGAPDHTIP41CACAct
几何平均数 Geometric mean26.0824.6324.6631.4928.9628.7828.7028.19
最小值 Minimum24.1322.8122.1629.2826.8726.3326.3326.22
最大值 Maximum28.0926.6526.8533.7230.9431.0330.3730.45
标准差 s1.591.641.851.781.581.691.581.49
变异系数 CV/%6.096.647.505.655.465.855.505.27
皮尔逊相关系数 r0.9960.9940.9910.9890.9820.9810.9230.914
表4  BestKeeper软件分析8个候选内参基因在MeJA诱导下的表达稳定性
参量 Parameter12345678
MM
基因 GeneGAPDHCACUbiL33UKActEF1αTIP41
几何平均数 Geometric mean31.2230.6227.2428.0933.7729.5026.3830.68
最小值 Minimum30.6630.0026.8427.9933.1428.7826.2330.19
最大值 Maximum31.5631.1127.5928.2134.5429.9926.5931.36
标准差 s0.280.350.240.100.380.430.120.35
变异系数 CV/%0.901.130.890.351.121.470.441.14
皮尔逊相关系数 r0.9900.9630.9470.8270.8260.7100.597-0.971
62579
基因 GeneEF1αL33TIP41CACUKUbiGAPDHAct
几何平均数 Geometric mean27.3329.1331.1631.0934.5227.7631.1430.24
最小值 Minimum27.1828.9730.6930.6634.2727.5730.7630.12
最大值 Maximum27.5729.4531.7431.6934.9027.9031.4530.33
标准差 s0.120.160.470.300.240.110.200.06
变异系数 CV/%0.440.541.490.960.700.410.640.19
皮尔逊相关系数 r0.9730.8050.7370.7200.6870.6580.485-0.682
MM&62579
基因 GeneEF1αL33UbiUKCACActTIP41GAPDH
几何平均数 Geometric mean26.8528.6127.5034.1530.8629.8630.9231.18
最小值 Minimum26.2327.9926.8433.1430.0028.7830.1930.66
最大值 Maximum27.5729.4527.9034.9031.6930.3331.7431.56
标准差 s0.480.520.280.470.350.400.460.25
变异系数 CV/%1.771.821.021.371.131.341.500.80
皮尔逊相关系数 r0.9470.9430.9310.8680.8050.7970.3500.260
表5  BestKeeper软件分析8个候选内参基因在SA诱导下的表达稳定性

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
L334311322212.111
Ubi1163146163.222
Act5642611754.113
UK6416454524.114
EF1α7157263444.335
CAC1734735634.336
GAPDH3575578375.567
TIP418888887887.898
表6  番茄在ABA诱导下8个候选内参基因的稳定性排序

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
L331112124211.671
EF1α1111312521.892
UK6336233443.783
Ubi3443547634.334
TIP417557458165.335
GAPDH4665665755.566
CAC5884886376.337
Act8778771886.788
表7  番茄在MeJA诱导下8个候选内参基因的稳定性排序

基因

Gene

geNormNormFinderBestKeeper

平均值

Mean

综合排序

Comprehensive

ranking

MM62579MM&62579MM62579MM&62579MM62579MM&62579
EF1α1112117111.781
L331111234221.892
Ubi3333423633.333
Act5445346865.004
UK7557555545.335
CAC6766762455.446
GAPDH4674671785.567
TIP418888888377.338
表8  番茄在SA诱导下8个候选内参基因的稳定性排序
1 赵丹丹,陈景超,黄兆峰,等.刺萼龙葵种子中适宜内参基因的筛选[J].植物保护,2020,46(3):40-46, 51. DOI:10.16688/j.zwbh.2019105
ZHAO D D, CHEN J C, HUANG Z F, et al. Selection of suitable reference genes in Solanum rostratum seeds[J]. Plant Protection, 2020, 46(3): 40-46, 51. (in Chinese with English abstract)
doi: 10.16688/j.zwbh.2019105
2 张兰,檀鹏辉,滕珂,等.草地早熟禾荧光定量PCR分析中内参基因的筛选[J].草业学报,2017,26(3):75-81. DOI:10.11686/cyxb2016297
ZHANG L, TAN P H, TENG K, et al. Screening of reference genes for real-time fluorescence quantitative PCR in Kentucky bluegrass[J]. Acta Prataculturae Sinica, 2017, 26(3): 75-81. (in Chinese with English abstract)
doi: 10.11686/cyxb2016297
3 张燕梅,王瑞芳,杨子平,等.剑麻内参基因筛选与稳定表达分析[J].热带作物学报,2019,40(11):2166-2173. DOI:10.3969/j.issn.1000-2561.2019.11.010
ZHANG Y M, WANG R F, YANG Z P, et al. Screening of suitable reference genes for qRT-PCR normalization in sisal[J]. Chinese Journal of Tropical Crops, 2019, 40(11): 2166-2173. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2561.2019.11.010
4 赵艺蕊,黄春颖,王克涛,等.山核桃实时荧光定量PCR分析中内参基因的筛选与验证[J].果树学报,2022,39(1):10-21. DOI:10.13925/j.cnki.gsxb.202310289
ZHAO Y R, HUANG C Y, WANG K T, et al. Screening and verification of internal reference genes by real time quantitative PCR analysis in Carya cathayensis [J]. Journal of Fruit Science, 2022, 39(1): 10-21. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.202310289
5 丁苏芹,李玺,唐东芹.小苍兰实时荧光定量PCR中的内参基因筛选[J].南京林业大学学报(自然科学版),2020,44(3):19-25. DOI:10.3969/j.issn.1000-2006.201909021
DING S Q, LI X, TANG D Q. Screening on reference genes for real-time fluorescent quantitative PCR of Freesia hybrida [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 19-25. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-2006.201909021
6 SMITHA P K, VISHNUPRIYAN K, KAR A S, et al. Genome wide search to identify reference genes candidates for gene expression analysis in Gossypium hirsutum [J]. BMC Plant Biology, 2019, 19: 405. DOI: 10.1186/s12870-019-1988-3
doi: 10.1186/s12870-019-1988-3
7 韩晓雪,韩佳轩,姜晶.番茄在非生物胁迫下实时定量RT-PCR中内参基因的筛选[J].分子植物育种,2015,13(4):822-831. DOI:10.13271/j.mpb.013.000822
HAN X X, HAN J X, JIANG J. Screening the reference genes for the studies of quantitative real-time RT-PCR in tomato under abiotic stress[J]. Molecular Plant Breeding, 2015, 13(4): 822-831. (in Chinese with English abstract)
doi: 10.13271/j.mpb.013.000822
8 姜静,王银磊,赵丽萍,等.番茄qRT-PCR内参基因的筛选[J].江苏农业学报,2017,33(2):389-396. DOI:10.3969/j.issn.1000-4440.2017.02.024
JIANG J, WANG Y L, ZHAO L P, et al. Selection of tomato reference genes for qRT-PCR[J]. Jiangsu Journal of Agricul-tural Sciences, 2017, 33(2): 389-396. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-4440.2017.02.024
9 ZHENG Z, NONOMURA T, APPIANO M, et al. Loss of function in Mlo orthologs reduces susceptibility of pepper and tomato to powdery mildew disease caused by Leveillula taurica [J]. PLoS ONE, 2013, 8(7): e70723. DOI: 10.1371/journal.pone.0070723
doi: 10.1371/journal.pone.0070723
10 崔菲菲,孟川,王彦华,等.大白菜-结球甘蓝易位系实时荧光定量PCR内参基因的筛选[J].华北农学报,2018,33(5):60-67. DOI:10.7668/hbnxb.2018.05.008
CUI F F, MENG C, WANG Y H, et al. Reference genes selection for quantitative real-time PCR in Chinese cabbage-cabbage translocation lines[J]. Acta Agriculturae Boreali-Sinica, 2018, 33(5): 60-67. (in Chinese with English abstract)
doi: 10.7668/hbnxb.2018.05.008
11 ZHOU X H, LIU J, ZHUANG Y. Selection of appropriate reference genes in eggplant for quantitative gene expression studies under different experimental conditions[J]. Scientia Horticulturae, 2014, 176: 200-207. DOI: 10.1016/j.scienta.2014.07.010
doi: 10.1016/j.scienta.2014.07.010
12 CHEN H, YANG Z Q, HU Y, et al. Reference genes selection for quantitative gene expression studies in Pinus massoniana L.[J]. Trees, 2016, 30(3): 685-696. DOI: 10.1007/s00468-015-1311-3
doi: 10.1007/s00468-015-1311-3
13 覃慧娟,范付华,周紫晶.激素处理下马尾松茎干组织qPCR内参基因的筛选[J].农业生物技术学报,2022,30(2):393-401. DOI:10.3969/j.issn.1674-7968.2022.017
QIN H J, FAN F H, ZHOU Z J. Screening of qPCR internal reference genes in stem tissue of Pinus massoniana under hormone treatment[J]. Journal of Agricultural Biotechnology, 2022, 30(2): 393-401. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-7968.2022.017
14 VANGUILDER H D, VRANA K E, FREEMAN W M. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 2008, 44(5): 619-626. DOI: 10.2144/000112776
doi: 10.2144/000112776
15 ZHANG H, HAN W, DE SMET I, et al. ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem[J]. The Plant Journal, 2010, 64(5): 764-774. DOI: 10.1111/j.1365-313X.2010.04367.x
doi: 10.1111/j.1365-313X.2010.04367.x
16 TON J, FLORS V, MAUCH-MANI B. The multifaceted role of ABA in disease resistance[J]. Trends in Plant Science, 2009, 14(6): 310-317. DOI: 10.1016/j.tplants.2009.03.006
doi: 10.1016/j.tplants.2009.03.006
17 陈田硕.脱落酸对番茄防御灰叶斑病的功能研究[D].山东,泰安:山东农业大学,2020.
CHEN T S. The role of ABA in tomato resistance to grey leaf spot disease[D]. Tai’an, Shandong: Shandong Agricultural University, 2020. (in Chinese with English abstract)
18 范志金,刘秀峰,刘凤丽,等.水杨酸在诱导系统获得抗性中的信号传导作用[J].农药,2004(6):257-260. DOI:10.3969/j.issn.1006-0413.2004.06.005
FAN Z J, LIU X F, LIU F L, et al. The role of salicylic acid in systemic acquired resistance signaling pathways[J]. Chinese Journal of Pesiticides, 2004(6): 257-260. (in Chinese with English abstract)
doi: 10.3969/j.issn.1006-0413.2004.06.005
19 YU X X, ZHANG W J, ZHANG Y, et al. The roles of methyl jasmonate to stress in plants[J]. Functional Plant Biology, 2019, 46(3): 197-212. DOI: 10.1071/FP18106
doi: 10.1071/FP18106
20 胡彦江,张茹琴,王瑞荣,等.水杨酸、乙酰水杨酸对番茄幼苗叶片中PPO和POD的诱导作用[J].西北植物学报,2007,27(2):262-266. DOI:10.3321/j.issn:1000-4025.2007.02.009
HU Y J, ZHANG R Q, WANG R R, et al. Induction of polyphenol oxidase and peroxidase activity in tomato seedling leaves by salicylic acid and acetylsalicylic acid[J]. Acta Botanica Boreali-Occidentalia Sinica, 2007, 27(2): 262-266. (in Chinese with English abstract)
doi: 10.3321/j.issn:1000-4025.2007.02.009
21 董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制[J].植物病理学报,1996,26(4):289-293.
DONG H S. Expressive regulation of plant disease defense genes in relation with hereditability mechanism of induced resistance[J]. Acta Phytopathologica Sinica, 1996, 26(4): 289-293. (in Chinese)
22 DU M M, ZHAO J H, TZENG D T W, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato[J]. The Plant Cell, 2017, 29(8): 1883-1906. DOI: 10.1105/tpc.16.00953
doi: 10.1105/tpc.16.00953
23 UEHARA T, SUGIYAMA S, MATSUURA H, et al. Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid[J]. Plant & Cell Physiology, 2010, 51(9): 1524-1536. DOI: 10.1093/pcp/pcq109
doi: 10.1093/pcp/pcq109
24 VANDESOMPELE J, DE PRETER K, PATTYN F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 2002, 3(7): research0034.1. DOI: 10.1186/gb-2002-3-7-research0034
doi: 10.1186/gb-2002-3-7-research0034
25 ANDERSEN C L, JENSEN J L, ØRNTOF T F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2018, 64(15): 5245-5250. DOI: 10.1158/0008-5472.CAN-04-0496
doi: 10.1158/0008-5472.CAN-04-0496
26 PFAFFL M W, TICHOPAD A, PRGOMET C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 2004, 26(6): 509-515. DOI: 10.1023/b:bile.0000019559.84305.47
doi: 10.1023/b:bile.0000019559.84305.47
27 XIAO Z, SUN X B, LIU X Q, et al. Selection of reliable reference genes for gene expression studies on Rhododendron molle G. Don[J]. Frontiers in Plant Science, 2016, 7: 1547. DOI: 10.3389/fpls.2016.01547
doi: 10.3389/fpls.2016.01547
28 DIE J V, ROMÁN B, NADAL S, et al. Evaluation of candidate reference genes for expression studies in Pisum sativum under different experimental conditions[J]. Planta, 2010, 232: 145-153. DOI: 10.1007/s00425-010-1158-1
doi: 10.1007/s00425-010-1158-1
29 SCHOLTZ J J, VISSER B. Reference gene selection for qPCR gene expression analysis of rust-infected wheat[J]. Physiological and Molecular Plant Pathology, 2013, 81: 22-25. DOI: 10.1016/j.pmpp.2012.10.006
doi: 10.1016/j.pmpp.2012.10.006
30 刘霞宇.基于实时荧光定量PCR的忍冬内参基因筛选[D].山西,太原:山西农业大学,2017.
LIU X Y. Selection of candidate reference genes for gene expression studies by quantitative real-time PCR in Lonicera japonica Thunb.[D]. Taiyuan, Shanxi: Shanxi Agricultural University, 2017. (in Chinese with English abstract)
31 吴建阳,何冰,杜玉洁,等.利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J].现代农业科技,2017(5):278-281. DOI:10.3969/j.issn.1007-5739.2017.05.174
WU J Y, HE B, DU Y J, et al. Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017(5): 278-281. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-5739.2017.05.174
32 刘小飞,于波,黄丽丽,等.杜鹃红山茶实时定量PCR内参基因筛选及验证[J].广东农业科学,2020,47(12):203-211. DOI:10.16768/j.issn.1004-874x.2020.12.021
LIU X F, YU B, HUANG L L, et al. Screening and validation of reference genes of Camellia azalea by quantitative real-time PCR[J]. Guangdong Agricultural Sciences, 2020, 47(12): 203-211. (in Chinese with English abstract)
doi: 10.16768/j.issn.1004-874x.2020.12.021
33 乔永刚,王勇飞,曹亚萍,等.药用蒲公英低温和高温胁迫下内参基因筛选与相关基因表达分析[J].园艺学报,2020,47(6):1153-1164. DOI:10.16420/j.issn.0513-353x.2019-1005
QIAO Y G, WANG Y F, CAO Y P, et al. Reference genes selection and related genes expression analysis under low and high temperature stress in Taraxacum officinale [J]. Acta Horticulturae Sinica, 2020, 47(6): 1153-1164. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2019-1005
34 LACERDA A L M, FONSECA L N, BLAWID R, et al. Reference gene selection for qPCR analysis in tomato-bipartite begomovirus interaction and validation in additional tomato-virus pathosystems[J]. PLoS ONE, 2015, 10(8): e0136820. DOI: 10.1371/journal.pone.0136820
doi: 10.1371/journal.pone.0136820
35 HONG Y, TANG X J, HUANG H, et al. Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum[J]. BMC Genomics, 2015, 16: 202. DOI: 10.1186/s12864-015-1428-1
doi: 10.1186/s12864-015-1428-1
36 WANG Q, ISHIKAWA T, MICHIUE T, et al. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data: comprehensive evaluation using geNorm, NormFinder, and BestKeeper[J]. International Journal of Legal Medicine, 2012, 126(6): 943-952. DOI: 10.1007/s00414-012-0774-7
doi: 10.1007/s00414-012-0774-7
37 BUSTIN S A, BENES V, GARSON J A, et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 2009, 55(4): 611-622. DOI: 10.1373/clinchem.2008.112797
doi: 10.1373/clinchem.2008.112797
38 吝月爱.玉米在非生物胁迫和激素处理条件下实时荧光定量PCR内参基因的选择[D].四川,成都:四川农业大学,2012.
LIN Y A. Reference gene selection for quantitative real-time PCR in maize treated with abiotic stresses and hormones[D]. Chengdu, Sichuan: Sichuan Agricultural University, 2012. (in Chinese with English abstract)
39 ZHANG Y T, ZHU L J, XUE J Y, et al. Selection and verification of appropriate reference genes for expression normalization in Cryptomeria fortunei under abiotic stress and hormone treatments[J]. Genes, 2021, 12(6): 791-809. DOI: 10.3390/genes12060791
doi: 10.3390/genes12060791
40 宋雄.欧芹不同逆境条件下适宜内参基因的筛选[D].江苏,南京:南京农业大学,2016.
SONG X. Screening of stable reference genes under different stress conditions in parsley[D]. Nanjing, Jiangsu: Nanjing Agricultural University, 2016. (in Chinese with English abstract)
41 DEKKERS B J W, WILLEMS L, BASSEL G W, et al. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds[J]. Plant and Cell Physiology, 2012, 53(1): 28-37. DOI: 10.1093/pcp/pcr113
doi: 10.1093/pcp/pcr113
[1] 孙佳琦,王晨,王光华,任应党,祝增荣,白耀宇. 再生稻田拟环纹豹蛛与青翅蚁形隐翅甲间的集团内捕食及其影响因素[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 807-822.
[2] 谭洪吉,高艳明,李建设,魏文璐. 不同功能肥料对基质栽培樱桃番茄的品质产量及基质环境的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 434-442.
[3] 王慧茹,闫思华,高艳明,李建设. 不同整枝方式对樱桃番茄果实商品性、营养品质及产量的影响[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 347-353.
[4] 王晓慧,周昆鹏. 自然环境中的红色番茄图像识别方法研究[J]. 浙江大学学报(农业与生命科学版), 2021, 47(3): 395-403.
[5] 张钟炎,胡鲁巍,陈加威,朱祝军,祝彪. 矮生观赏番茄种质资源农艺性状鉴定及观赏性评价[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 158-170.
[6] 郑福顺,王晓敏,李国花,李洪磊,周鹏泽,王林,白圣懿,刘珮君,张雪艳,胡新华,付金军,高艳明,李建设. 基于表型性状的宁夏番茄种质资源核心种质构建[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 171-181.
[7] 梁颖,石玉,赵鑫,白龙强,侯雷平,张毅. 低磷条件下硅对番茄幼苗生长及生理特性的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 151-160.
[8] 莫远亮,王郁石,王继文. 天府肉鹅母系不同阶段颗粒细胞内参基因的选择[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 376-384.
[9] 田萍, 李建设, 高艳明. 微咸水灌溉对日光温室番茄产量及果实各部位蔗糖代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 667-677.
[10] 陈珊珊, 周业凯, 张志明, 张敏, 汪俏梅. 二氧化碳施肥对樱桃番茄果实发育和品质的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 318-326.
[11] 陶晓亚, 李家寅, 茅林春. 脱落酸对采后番茄果实损伤愈合的作用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 321-326.
[12] 郑嫩珠, 李丽, 辛清武, 缪中纬, 朱志明, 刘凤辉, 吴俭飞, 卢立志. 内参基因对TYR、MITF和ASIP基因在白绒乌骨鸡各组织表达水平的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(6): 732-740.
[13] 梁喜凤, 蔡阳阳, 王永维. 番茄钵苗自动移栽钵体物理机械特性试验[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 616-622.
[14] 王燕,潘长田,王洁,秦力,邹滔,卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 449-457.
[15] 郑磊, 张静, 彭燕, 麻文建, 朱天辉. 实时荧光定量聚合酶链反应检测核桃根际土壤生防菌Bacillus amyloliquefaciens和Trametes versicolor的定殖[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 277-284.