Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (2): 151-160    DOI: 10.3785/j.issn.1008-9209.2019.07.301
园艺学     
低磷条件下硅对番茄幼苗生长及生理特性的影响
梁颖(),石玉,赵鑫,白龙强,侯雷平,张毅()
山西农业大学园艺学院/山西省设施蔬菜提质增效协同创新中心,山西 晋中 030801
Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition
Ying LIANG(),Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG()
College of Horticulture/Collaborative Innovation Center of Quality and Profit Improvement for the Protected Vegetables of Shanxi Province, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
 全文: PDF(1669 KB)   HTML
摘要:

为探究低磷条件下硅对番茄幼苗的生理调节作用,以‘中杂9号’番茄为试验材料,采用水培法,设置对照(0.66 mmol/L NaH2PO4)、轻度低磷(0.44 mmol/L NaH2PO4)、重度低磷(0.22 mmol/L NaH2PO4)、缺磷(0 mmol/L NaH2PO4)4个磷浓度水平,研究外源硅(1.5 mmol/L K2SiO3?nH2O)对不同供磷水平下番茄干质量、叶片相对含水量、根系形态指标、叶绿素含量、膜脂过氧化程度、质膜完整性、活性氧水平、抗氧化酶活性和硅、磷含量的影响。结果表明:与正常的磷供应水平(对照)相比,低磷胁迫显著降低番茄叶片叶绿素含量和总根长,膜脂伤害程度增加,植株体内磷含量下降,从而影响番茄生长。外源硅明显缓解了低磷胁迫对番茄生长的抑制效应,使番茄幼苗在低磷条件下仍保持较高的叶片相对含水量、叶绿素含量和良好的根系长势,降低了叶片和根系中丙二醛含量、含量和H2O2水平,增强了超氧化物歧化酶、过氧化物酶和过氧化氢酶活性,促进了植株对磷的吸收,其中,在轻度低磷胁迫下硅对番茄幼苗生长的改善效应最显著。可见,外源硅处理能够基于改善根系生长和叶片水分状态、诱导增强植株的抗氧化防御能力来提高番茄幼苗的磷缺乏耐受性,且对轻度低磷胁迫的调控效应更明显。本研究结果可为探讨硅、磷这2种营养元素的协同作用,以及硅缓解番茄幼苗低磷胁迫的生理机制提供理论依据。

关键词: 番茄低磷生理特性    
Abstract:

To explore the physiological effects of silicon on tomato seedlings under different low phosphorus conditions, we performed this study using ‘Zhongza 9’ tomato cultivar as the experimental material, with seven combination treatments of two silicon levels (0 and 1.5 mmol/L K2SiO3?nH2O) and four phosphorus levels (0.66, 0.44, 0.22 and 0 mmol/L NaH2PO4) under hydroponic cultivation, and investigated the effects of silicon on the plant dry mass, leaf relative water content, root morphological parameters, chlorophyll contents, membrane lipid peroxidation, plasma membrane integrity, reactive oxygen species levels, antioxidant enzyme activities, silicon and phosphorus contents of tomato seedlings exposed to different phosphorus supply levels. The results showed that, compared with the control treatment (0.66 mmol/L NaH2PO4), the leaf chlorophyll content and total root length were significantly reduced under the low phosphorus condition, while the membrane lipid damage was intensified and the phosphorus content in plant was declined, which led to the growth inhibition of tomato seedlings. Addition of exogenous silicon significantly alleviated the inhibitory effects of low phosphorus stress on the seedling growth, and the stressed-plants were maintained with higher leaf relative water contents, chlorophyll contents and better root growth. Besides, the corresponding malondialdehyde (MDA) content, content and H2O2 level in leaves and roots were decreased due to the enhancement of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities, and the assimilation of phosphorus in plants was promoted. Interestingly, there was the most significant facilitation of silicon on the growth of tomato seedlings when subjected to mildly low phosphorus stress. In general, exogenous silicon could promote the tolerance of tomato seedlings to phosphorus-deficiency, through improving the root growth and leaf water status, as well as inducing the enhancement of plant antioxidation capacity, and the silicon-mediated regulatory effect was more pronounced for mildly low phosphorus stress. These results are helpful for further understanding the synergistic effects of silicon and phosphorus elements, and will provide a theory basis for illuminating the physiological mechanism of silicon-mediated alleviation of tomato seedlings under the low phosphorus stress.

Key words: tomato    silicon    low phosphorus    physiological properties
收稿日期: 2019-07-30 出版日期: 2020-05-22
CLC:  S 641.2  
基金资助: 国家自然科学基金青年科学基金(31501750);山西省重点研发计划重点项目子课题(201703D211001-04-03)
通讯作者: 张毅     E-mail: 18404969436@163.com;harmony1228@163.com
作者简介: 梁颖(https://orcid.org/0000-0003-1701-2705),E-mail:18404969436@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
梁颖
石玉
赵鑫
白龙强
侯雷平
张毅

引用本文:

梁颖,石玉,赵鑫,白龙强,侯雷平,张毅. 低磷条件下硅对番茄幼苗生长及生理特性的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 151-160.

Ying LIANG,Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG. Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 151-160.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.07.301        http://www.zjujournals.com/agr/CN/Y2020/V46/I2/151

图1  不同供磷水平下外源硅对番茄地上部和地下部干质量的影响CK:0.66 mmol/L NaH2PO4;P0-Si:0 mmol/L NaH2PO4+0 mmol/L K2SiO3•nH2O;P0+Si:0 mmol/L NaH2PO4+1.5 mmol/L K2SiO3•nH2O;P1-Si:0.22 mmol/L NaH2PO4+0 mmol/L K2SiO3•nH2O;P1+Si:0.22 mmol/L NaH2PO4+1.5 mmol/L K2SiO3•nH2O;P2-Si:0.44 mmol/L NaH2PO4+0 mmol/L K2SiO3•nH2O;P2+Si:0.44 mmol/L NaH2PO4+1.5 mmol/L K2SiO3•nH2O。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图2  不同供磷水平下外源硅对番茄叶片相对含水量的影响各处理符号表示的含义详见图1注。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。

处理

Treatment

总根长

Total root length/cm

根系总表面积

Total root surface area/cm2

根系总体积

Total root volume/cm3

根系平均直径

Average root diameter/mm

CK2 158.1±172.6a495.3±22.9a9.72±1.02a0.71±0.08a
P0-Si1 327.1±200.6d160.9±21.4f4.14±1.87b0.59±0.11a
P0+Si1 714.2±126.9bc218.4±23.7cde4.72±0.75b0.60±0.13a
P1-Si1 385.2±106.6cd209.6±39.9ef4.18±1.31b0.60±0.03a
P1+Si2 015.8±282.3ab272.5±35.7c4.61±1.74b0.62±0.08a
P2-Si1 469.8±305.1cd255.2±36.0cd4.73±0.12b0.60±0.08a
P2+Si2 306.4±64.7a408.3±45.2b7.64±0.47a0.66±0.01a
表1  不同供磷水平下外源硅对番茄根系形态指标的影响

处理

Treatment

总叶绿素

Chl (a+b)

叶绿素a

Chl a

叶绿素b

Chl b

类胡萝卜素

Carotenoid

CK2.22±0.04a1.94±0.04a0.28±0.01ab0.51±0.01a
P0-Si1.97±0.06c1.74±0.02d0.23±0.03c0.44±0.03c
P0+Si2.04±0.02bc1.79±0.07cd0.25±0.03bc0.46±0.03bc
P1-Si2.08±0.03b1.82±0.06bcd0.26±0.01abc0.47±0.01abc
P1+Si2.19±0.04a1.90±0.03ab0.29±0.02ab0.49±0.04ab
P2-Si2.08±0.03b1.83±0.01bc0.25±0.01bc0.46±0.01bc
P2+Si2.21±0.04a1.91±0.03ab0.30±0.03a0.50±0.02ab
表2  不同供磷水平下外源硅对番茄叶片叶绿素含量和类胡萝卜素含量的影响 (mg/g)
图3  不同供磷水平下外源硅对番茄MDA含量的影响各处理符号表示的含义详见图1注。MDA含量按鲜质量计。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图4  不同供磷水平下外源硅对番茄根尖质膜完整性的影响各处理符号表示的含义详见图1注。
图5  不同供磷水平下外源硅对番茄根尖和叶片积累和含量的影响
图6  不同供磷水平下外源硅对番茄H2O2含量的影响各处理符号表示的含义详见图1注。H2O2含量按鲜质量计。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。

处理

Treatment

超氧化物歧化酶活性

SOD activity/(U/(g?h))

过氧化氢酶活性

CAT activity/(U/(g?min))

过氧化物酶活性

POD activity/(U/(g?min))

叶 Leaf根 Root叶 Leaf根 Root叶 Leaf根 Root
CK35.5±2.4a14.8±1.7a88.1±7.4a98.4±6.7a2 617.7±85.0a21 964.1±311.1a
P0-Si25.0±1.2d10.5±1.6c35.2±6.9c32.9±4.3c1 096.0±82.2d10 062.4±543.7f
P0+Si25.7±1.3cd12.1±1.7bc44.1±5.3c37.7±5.2c1 667.6±79.9d13 386.5±497.4e
P1-Si25.2±1.6d11.1±1.8c43.5±6.6c55.2±7.3b2 157.0±83.5c14 847.0±574.0cd
P1+Si30.7±1.1b12.5±1.6abc60.0±5.4b62.6±3.1b2 294.2±90.8bc15 737.4±527.9c
P2-Si28.6±1.8bc11.9±1.1bc65.7±5.2b63.8±7.7b2 338.3±78.4b14 452.1±457.8d
P2+Si36.6±2.2a15.3±1.6a90.1±8.5a100.2±5.6a2 489.5±83.1a20 037.7±731.7b
表3  不同供磷水平下外源硅对番茄幼苗主要抗氧化酶活性的影响
图7  不同供磷水平下外源硅对番茄各部位硅含量的影响各处理符号表示的含义详见图1注。硅含量按干质量计。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
图8  不同供磷水平下外源硅对番茄各部位磷含量的影响各处理符号表示的含义详见图1注。全磷含量按干质量计。短栅上不同小写字母表示在P<0.05水平差异有统计学意义。
1 WANG L S, LIU D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018,271:108-116. DOI:10.1016/j.plantsci.2018.03.013
doi: 10.1016/j.plantsci.2018
2 张慧敏,章明奎.不同形态磷在砂土中的移动性研究.浙江大学学报(农业与生命科学版),2010,36(4):456-466. DOI:10.3785/j.issn.1008-9209.2008.04.016
ZHANG H M, ZHANG M K. Study on the mobility of different forms of phosphorus in sand. Journal of Zhejiang University (Agriculture and Life Sciences), 2010,36(4):456-466. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2008.04.016
3 ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Science of the Total Environment, 2018,612:522-537. DOI:10.1016/j.scitotenv.2017.08.095
doi: 10.1016/j.scitotenv.2017.08.095
4 RAMOSARTUSO F, GALATRO A, BUET A, et al. Key acclimation responses to phosphorus deficiency in maize plants are influenced by exogenous nitric oxide. Journal of Plant Physiology, 2018,222:51-58.
5 HUANG J, XU C C, RIDOUTT B G, et al. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. Journal of Cleaner Production, 2017,159:171-179. DOI:10.1016/j.jclepro.2017.05.008
doi: 10.1016/j.jclepro
6 BAKHAT H F, BIBI N, ZIA Z, et al. Silicon mitigates biotic stresses in crop plants: a review. Crop Protection, 2018,104:21-34. DOI:10.1016/j.cropro.2017.10.008
doi: 10.1016/j.cropro.2017.10.008
7 ELSHERBINY E A, TAHER M. Silicon induces resistance to postharvest rot of carrot caused by Sclerotinia sclerotiorum and the possible of defense mechanisms. Postharvest Biology and Technology, 2018,140:11-17. DOI:10.1016/j.postharvbio.2018.02.004
doi: 10.1016/j.postharvbio
8 石玉.外源硅对番茄幼苗水分胁迫伤害的缓解效应及机理研究.陕西,杨凌:西北农林科技大学,2014.
SHI Y. Study on alleviative effects of exogenous silicon on water stress-induced injury and the underlying mechanisms in tomato seedling. Yangling, Shaanxi: Northwest A & F University, 2014. (in Chinese with English abstract)
9 MAPODZEKE J M, SAGONDA T, SEHAR S,等.锌和硅对2种水稻基因型的镉毒害及矿质元素转移的影响.浙江大学学报(农业与生命科学版),2018,44(3):294-310. DOI:10.3785/j.issn.1008-9209.2017.12.131
MAPODZEKE J M, SAGONDA T, SEHAR S, et al. Effects of zinc and silicon on cadmium toxicity and mineral element transfer in two rice genotypes. Journal of Zhejiang University (Agriculture and Life Sciences), 2018,44(3):294-310. (in English with Chinese abstract)
doi: 10.3785/j.issn.1008-9209.2017.12.131
10 COSKUN D, BRITTO D T, HUYNH W Q, et al. The role of silicon in higher plants under salinity and drought stress. Frontiers in Plant Science, 2016,7:1072. DOI:10.3389/fpls.2016.01072
doi: 10.3389/fpls
11 张译文,孙昭安,李孟,等.硅肥对冬小麦磷素吸收转运的影响.土壤通报,2019,50(1):165-170. DOI:10.19336/j.cnki.trtb.2019.01.25
ZHANG Y W, SUN Z A, LI M, et al. Effects of silicon fertilizer on phosphorus absorption and translocation in winter wheat. Chinese Journal of Soil Science, 2019,50(1):165-170. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2019.01.25
12 张嘉莉,朱从桦,豆攀,等.硅、磷配施对玉米苗期生长及氮磷钾积累的影响.中国生态农业学报,2017,25(5):677-688. DOI:10.13930/j.cnki.cjea.170222
ZHANG J L, ZHU C Y, DOU P, et al. Effects of combined application of silicon and phosphorus on maize seedling growth and nitrogen, phosphorus and potassium accumulation. Chinese Journal of Eco-Agriculture, 2017,25(5):677-688. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.170222
13 ZHANG X M, ZHANG Q, LIANG B, et al. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Applied Soil Ecology, 2017,121:82-89. DOI:10.1016/j.apsoil.2017.08.016
doi: 10.1016/j.apsoil.2017.08.016
14 BORGES B M, ABDALA D B, DE SOUZA M F, et al. Organomineral phosphate fertilizer from sugarcane byproduct and its effects on soil phosphorus availability and sugarcane yield. Geoderma, 2019,339:20-30. DOI:10.1016/j.geoderma.2018.12.036
doi: 10.1016/j.geoderma
15 朱从桦,张鸿,袁继超,等.低磷胁迫下加硅对玉米苗期硅、磷营养及叶绿素荧光参数的影响.水土保持学报,2017,31(1):303-309. DOI:10.13870/j.cnki.stbcxb.2017.01.050
ZHU C H, ZHANG H, YUAN J C, et al. Silicon addition on silicon and phosphorus nutrition and chlorophyll fluorescence parameters of maize seedling stage under low phosphorus stress. Journal of Soil and Water Conservation, 2017,31(1):303-309. (in Chinese with English abstract)
doi: 10.13870/j.cnki.stbcxb.2017.01.050
16 张丽丽,刘德兴,史庆华,等.黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用.中国农业科学,2018,51(8):1547-1555. DOI:10.3864/j.issn.0578-1752.2018.08.012
ZHANG L L, LIU D X, SHI Q H, et al. Physiological regulation of fulvic acid on tomato seedlings to adapt to low phosphorus stress. Scientia Agricultura Sinica, 2018,51(8):1547-1555. (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2018.08.012
17 蔡祖聪.我国设施栽培养分管理中待解的科学和技术问题.土壤学报,2019,56(1):36-43. DOI:10.11766/trxb201805310286
CAI Z C. Scientific and technological issues of nutrient management under greenhouse cultivation in China. Acta Pedologica Sinica, 2019,56(1):36-43. (in Chinese with English abstract)
doi: 10.11766/trxb201805310286
18 刘朋.硅增强高粱抗干旱、盐和镉胁迫能力以及缓解钾缺乏的作用机制研究.北京:中国科学院大学,2014.
LIU P. The mechanism of silicon on enhancing sorghum resistance to drought, salt, cadmium, K-deficiency. Beijing: University of Chinese Academy of Sciences, 2014. (in Chinese with English abstract)
19 ZHANG Y Q, ZHOU Y W, CHEN S Y, et al. Gibberellins play dual roles in response to phosphate starvation of tomato seedlings, negatively in shoots but positively in roots. Journal of Plant Physiology, 2019,234/235:145-153. DOI:10.1016/j.jplph.2019.02.007
doi: 10.1016/j.jplph.2019.02.007
20 李荣坦,姚华开,刘岳飞,等.低磷胁迫对番茄根系生长及根际土壤细菌多样性的影响.园艺学报,2016,43(3):473-484. DOI:10.16420/j.issn.0513-353x.2015-0919
LI R T, YAO H K, LIU Y F, et al. Effect of low phosphorus stress on root growth and soil bacterial diversity in rhizosphere of tomates. Acta Horticulturae Sinica, 2016,43(3):473-484. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2015-0919
21 孔令剑,朱倩,单玉姿,等.蔗糖对低磷胁迫条件下大豆苗期根系形态和物质积累的影响.大豆科学,2018,37(2):239-245. DOI:10.11861/j.issn.1000-9841.2018.02.023
KONG L J, ZHU Q, SHAN Y Z, et al. Effect of sucrose on root morphology and substance accumulation of soybean seedling stage under low phosphorus stress. Soybean Science, 2018,37(2):239-245. (in Chinese with English abstract)
doi: 10.11861/j.issn.1000-9841.2018.02.023
22 杨永.水培条件下硅对玉米幼苗低磷胁迫的缓解作用.成都:四川农业大学,2008.
YANG Y. Alleviating effect of silicon on low phosphorus stress of maize seedlings under hydroponic condition. Chengdu: Sichuan Agricultural University, 2008. (in Chinese with English abstract)
23 余利平,张春雷,马霓,等.甘蓝型油菜对干旱和低磷双重胁迫的生理反应Ⅱ:叶片叶绿素含量及叶绿素荧光参数.干旱地区农业研究,2013,31(2):169-175. DOI:10.3969/j.issn.1000-7601.2013.02.031
YU L P, ZHANG C L, MA N, et al. Physiological response of rapeseed(Brassica napus) to drought and low phosphorus deficiency Ⅱ: Chlorophyll content and chlorophyll fluorescence parameters. Agricultural Research in the Arid Areas, 2013,31(2):169-175. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7601.2013.02.031
24 郭天荣,姚鹏程,张子栋,等.铝毒和低磷胁迫下水稻幼苗抗氧化系统的响应.中国水稻科学,2013,27(6):653-657. DOI:10.3969/j.issn.1001-7216.2013.06.013
GUO T R, YAO P C, ZHANG Z D, et al. Involvement of antioxidative defense system in rice seedlings exposed to aluminum toxicity and phosphorus deficiency. Chinese Journal of Rice Science, 2013,27(6):653-657. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2013.06.013
25 SONG A L, LI Z, ZHANG J, et al. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials, 2009,172(1):74-83. DOI:10.1016/j.jhazmat.2009.06.143
doi: 10.1016/j.jhazmat.2009
26 LIANG Y C, CHEN Q, LIU Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). Journal of Plant Physiology, 2003,160(10):1157-1164. DOI:10.1078/0176-1617-01065
doi: 10.1078/0176-1617-01065
27 JOSEPH C, KHIARI L, GALLICHAND J, et al. Influence of sludge incineration ash on ryegrass growth and soil phosphorus status. Pedosphere, 2019,29(1):70-81. DOI:10.1016/s1002-0160(18)60058-x
doi: 10.1016/s1002-0160(18)60058-x
28 郝小雨,廖文华,刘建玲,等.过量施磷对油菜吸收矿质养分的影响.河北农业大学学报,2009,32(3):26-30.
HAO X Y, LIAO W H, LIU J L, et al. Effects of excessive phosphate fertilizer on growth and nutrient uptake of rape. Journal of Agricultural University of Hebei, 2009,32(3):26-30. (in Chinese with English abstract)
29 苏苑君,胡笑涛,王文娥,等.磷对水培生菜生长及矿质元素动态吸收的影响.中国生态农业学报,2015,23(10):1244-1252. DOI:10.13930/j.cnki.cjea.150263
SU Y J, HU X T, WANG W E, et al. Effects of phosphorus on the growth of hydroponic lettuce and dynamic absorption of mineral elements. Chinese Journal of Eco-Agriculture, 2015,23(10):1244-1252. (in Chinese with English abstract)
doi: 10.13930/j.cnki.cjea.150263
30 郭鑫年,孙娇,梁锦秀,等.施磷对宁夏引黄灌区水稻产量、氮磷吸收利用及氮素残留的影响.水土保持研究,2019,26(2):49-54, 61. DOI:10.13869/j.cnki.rswc.2019.02.008
GUO X N, SUN J, LIANG J X, et al. Effects of phosphorus fertilization on yield and nitrogen, phosphorus uptake and use efficiency of rice in the Yellow River irrigation region of Ningxia. Research of Soil and Water Conservation, 2019,26(2):49-54, 61. (in Chinese with English abstract)
doi: 10.13869/j.cnki.rswc.2019.02.008
[1] 田萍, 李建设, 高艳明. 微咸水灌溉对日光温室番茄产量及果实各部位蔗糖代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 667-677.
[2] MAPODZEKE James Mutemachani, SAGONDA Tichaona, SEHAR Shafaque, 张欣, 黄雨晴, ZVOBGO Gerald, MAODZEKAAntony, LWALABAWA LWALABA Jonas, SHAMSI Imran Haider. 锌和硅对2 种水稻基因型的镉毒害及矿质元素转移的影响(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 294-310.
[3] 陈珊珊, 周业凯, 张志明, 张敏, 汪俏梅. 二氧化碳施肥对樱桃番茄果实发育和品质的影响[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 318-326.
[4] 代邹,余华清,郭长春,马均,李娜,杨志远,徐徽,孙永健. 外源Na2SeO3和Na2SiO3对不同水稻拔节期镉吸收和积累的影响[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 441-450.
[5] 陶晓亚, 李家寅, 茅林春. 脱落酸对采后番茄果实损伤愈合的作用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 321-326.
[6] 梁喜凤, 蔡阳阳, 王永维. 番茄钵苗自动移栽钵体物理机械特性试验[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 616-622.
[7] 王燕,潘长田,王洁,秦力,邹滔,卢钢. 赤霉素对亚高温胁迫下番茄花柱外露及相关基因表达的影响[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4): 449-457.
[8] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[9] 武圣江1, 典瑞丽2, 韦克苏1, 李德仑1, 韩志康3, 林叶春1, 潘文杰1, 谢已书1*. 不同基因型烤烟成苗期植物学性状和生理特性差异[J]. 浙江大学学报(农业与生命科学版), 2014, 40(5): 511-518.
[10] 张智, 胡晓辉, 邹志荣*. 基于径向基函数神经网络的温室番茄灰霉病预测[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 197-202.
[11] 朱波, 曾建斌, 吴德志, 蔡圣冠, 杨丽娜, 张国平*. 青藏高原一年生野生大麦耐低钾种质的鉴定及其生理特性(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 165-174.
[12] 王军君1, 邬小撑2, 丁文雅1, 周元清1, 林咸永1*. 雾培营养液氮钾水平对不同番茄品种果实产量和营养品质的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 489-496.
[13] 何勇, 朱祝军*. 等渗的Ca(NO3)2和NaCl胁迫对番茄根系呼吸和活性氧代谢的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 396-402.
[14] . 番茄SlMAPK12基因的分离及表达特征分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 551-558.
[15] 谭艳玲, 张艳嫣, 高冬冬, 陈丹, 沈伟桥, 周建华, 黄冲平. 低温胁迫对铁皮石斛抗坏血酸过氧化物酶活性及丙二醛和脯氨酸含量的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 400-406.