Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 1007-1013    DOI: 10.3785/j.issn.1008-973X.2020.05.019
Energy and Power Engineering     
Experiment study on formation and length of droplets in T-junction microchannels
Jing-zhi ZHANG1,2(),Wu-kai CHEN1,Nai-xiang ZHOU3,Li LEI1,Fu-shun LIANG1
1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China
2. Power Engineering and Engineering Thermal Physics Postdoctoral Research Station, Shandong University, Jinan 250061, China
3. Shandong Urban and Rural Planning and Design Institute, Jinan 250013, China
Download: HTML     PDF(1340KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Flow characteristics of liquid-liquid two-phase flows in T-junction microchannels with 400×400 μm cross-section were experimentally studied using a high-speed camera. Silicon oil and distilled water with 0.5% sodium dodecyl sulfate (SDS) were used as dispersed phase and continuous phase, respectively. Volume flow rates of the disperse phase ranged from 1 to 5 mL/h, while those of the continuous phases ranged from 2 to 110 mL/h. Slug flow and droplet flow patterns were observed in the experimental work. Results show that the formation of dispersed slugs is controlled by the squeezing mechanism, while the shearing mechanism domains the liquid droplet formation process. The length of liquid droplet increases with the increase of volume flow rate of dispersed phase and the volume flow rate ratio of dispersed phase to continuous phase, and decreases with the increase of volume flow rate and capillary number of continuous phase. The change of lengths of liquid column is opposite to that of liquid droplet. The droplet generation time decreases with the increase of volume flow rates of dispersed phase and continuous phase, and the formation time for shearing mechanism is less than that of squeezing mechanism. Based on the experimental results, the volume flow rate ratio of dispersed phase to continuous phase and the capillary number of continuous phase are adopted to develop the predictive correlations of dimensionless liquid droplets, column length and droplet generation time.



Key wordsmicrochannel      two-phase flow      droplet      microscale      capillary number     
Received: 16 April 2019      Published: 05 May 2020
CLC:  TQ 124  
Cite this article:

Jing-zhi ZHANG,Wu-kai CHEN,Nai-xiang ZHOU,Li LEI,Fu-shun LIANG. Experiment study on formation and length of droplets in T-junction microchannels. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1007-1013.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.019     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/1007


T型微通道内液滴形成过程及长度的实验研究

利用高速摄像机研究截面为400×400 μm的正T型微通道内液-液两相流动特性,离散相(硅油)和连续相(质量分数为0.5%的十二烷基硫酸钠SDS蒸馏水)的体积流量范围分别为1~5、2~110 mL/h. 结果表明,两相流型主要为弹状流和滴状流,前者的形成机理为挤压机理,后者为剪切机理. 液滴的长度随离散相体积流量和离散相与连续相体积流量之比的增大而增大,随连续相的体积流量和毛细数的增大而降低. 液柱长度的变化规律与液滴长度相反. 液滴生成时间随离散相与连续相的体积流量的增大而逐渐降低,剪切机理生成液滴所需时间小于挤压机理. 依据实验结果,采用离散相与连续相体积流量比和连续相的毛细数,总结出无量纲液滴、液柱长度及液滴生成时间的预测关联式.


关键词: 微通道,  两相流,  液滴,  微尺度,  毛细数 
Fig.1 Schematic diagram of experimental test rig and test section for micro-droplets
Fig.2 Experimental image processing for micro-droplets
Fig.3 Forming processes of droplets in T-junction microchannels under different working conditions
Fig.4 Flow pattern regimes of liquid-liquid two-phase flows in T-junction microchannels
Fig.5 Effects of main factors on dimensionless length of droplets
Fig.6 Effects of main factors on dimensionless length of liquid slugs
文献 通道结构 连续相 离散相 关联式 MAD/% MADmax/% MRD/%
Xu等[20] 侧T型W=0.2 mm 水+SDS 正辛烷 ${L_{\rm{d}}}/W = 0.75{q^{1/3}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{ - 0.2}$ 22.5 55.5 ?18.7
Yao等[19] 正T型W=0.6 mm ${L_{\rm{d} } }/W = 1.34 + 1.623\dfrac{ { {q^{\rm{d} }_V } } }{ { {q^{\rm{c} }_V} - {q^{\rm{leak}}_V} } }$
甘油+SDS 辛烷 Case I ${ { {q}^{\rm{leak}}_{V} } }/{ { {q}_{V} }_{ {\rm{c} } } }\;=0.069\;8{\rm{C} }{ {\rm{a} }^{-0.269} }{ {q}^{0.041\;4} }$ 16.0 42.8 14.6
辛烷+ SPAN80 甘油 Case II ${ { {q}^{\rm{leak}}_{V} } }/{ { {q}_{V} }_{ {\rm{c} } } }\;=0.028\;2{\rm{C} }{ {\rm{a} }^{-0.321} }{ {q}^{0.249} }$ 13.0 41.2 7.2
魏丽娟等[22] 侧T型W=0.4 mm 水+甘油+SDS 环己烷 ${L_{\rm{d}}}/W = 0.85{\left( {{H}/{W}} \right)^{0.08}} + 1.28q{\left( {{H}/{W}} \right)^{ - 0.54}}$ 13.8 29.2 ?13.8
本研究 正T型W=0.4 mm 水+SDS 硅油 ${L_{\rm{d}}}/W = 0.522\;5{q^{0.129}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{ - 0.227}$ 6.7 17.7 5.2
水+SDS 硅油 ${L_{\rm{c}}}/W = 2.28{q^{ - 0.63}}{\rm{C}}{{\rm{a}}_{\rm{c}}}^{0.01}$ 14.5 38.2 2.1
Tab.1 Empirical correlations for droplet and liquid slug length
Fig.7 Comparison of experimental results and predictions of new correlations
Fig.8 Effects of volume flow rates of continuous and dispersed phases on formation time of droplets
Fig.9 Comparison of experimental dimensionless time and predictive value of correlations
[1]   ZHANG J, LI W Thermal and flow characteristics of water-nitrogen taylor flow inside vertical circular tubes[J]. Journal of Heat Transfer, 2018, 140 (8): 082004
[2]   ZHANG J, LI W Investigation of hydrodynamic and heat transfer characteristics of gas-liquid Taylor flow in vertical capillaries[J]. International Communications in Heat and Mass Transfer, 2016, 74: 1- 10
doi: 10.1016/j.icheatmasstransfer.2016.03.003
[3]   靳遵龙, 郭月明, 王定标, 等 T型正弦微通道内气液两相流动的数值研究[J]. 低温与超导, 2016, 44 (2): 39- 42
JIN Zun-long, GUO Yue-ming, WANG Ding-biao, et al Numerical simulation of gas-liquid two-phase flow in sinusoidal T-junction microchannels[J]. Cryogenics and Superconductivity, 2016, 44 (2): 39- 42
[4]   CAI W, ZHANG J, ZHANG X, et al Enhancement of CO2 absorption under taylor flow in the presence of fine particles [J]. Chinese Journal of Chemical Engineering, 2013, 21 (2): 135- 143
doi: 10.1016/S1004-9541(13)60451-6
[5]   姜山, 朱春英, 张璠玢, 等 微通道内单乙醇胺水溶液吸收CO2/N2混合气的传质特性 [J]. 化工学报, 2017, 68 (2): 643- 652
JIANG Shan, ZHU Chun-ying, ZHANG Fan-fen, et al Mass transfer performance of CO2/N2 mixture absorption into monoethanolamine aqueous solution in microchannel [J]. CIESC Journal, 2017, 68 (2): 643- 652
[6]   YAO C, ZHAO Y, CHEN G Multiphase processes with ionic liquids in microreactors: hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189: 340- 359
doi: 10.1016/j.ces.2018.06.007
[7]   ZHANG Q, LIU H, ZHAO S, et al Hydrodynamics and mass transfer characteristics of liquid-liquid slug flow in microchannels: the effects of temperature, fluid properties and channel size[J]. Chemical Engineering Journal, 2019, 358: 794- 805
doi: 10.1016/j.cej.2018.10.056
[8]   ZHAO S, WANG W, SHAO T, et al Mixing performance and drug nano-particle preparation inside slugs in a gas-liquid microchannel reactor[J]. Chemical Engineering Science, 2013, 100: 456- 463
doi: 10.1016/j.ces.2013.02.013
[9]   DAMIATI S, KOMPELLA U B, DAMIATI S A, et al Microfluidic devices for drug delivery systems and drug screening[J]. Genes, 2018, 9 (2): 103
doi: 10.3390/genes9020103
[10]   ZHOU C, ZHU P, TIAN Y, et al Microfluidic generation of aqueous two-phase-system (ATPS) droplets by oil-droplet choppers[J]. Lab on a Chip, 2017, 17 (19): 3310- 3317
doi: 10.1039/C7LC00696A
[11]   张井志, 李蔚 毛细管内气液Taylor流动的气泡及阻力特性[J]. 化工学报, 2015, 66 (3): 942- 948
ZHANG Jing-zhi, LI Wei Bubble and frictional characteristics of gas-liquid Taylor flow in capillary tube[J]. CIESC Journal, 2015, 66 (3): 942- 948
doi: 10.11949/j.issn.0438-1157.20141622
[12]   张井志, 李蔚 微小管径圆管气-液Taylor流动数值模拟[J]. 浙江大学学报:工学版, 2015, 49 (8): 1572- 1577
ZHANG Jing-zhi, LI Wei Numerical simulation of gas-liquid Taylor flow in mini/micro tubes[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (8): 1572- 1577
[13]   FU T, MA Y, FUNFSCHILLING D, et al Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65 (12): 3739- 3748
doi: 10.1016/j.ces.2010.03.012
[14]   WU Z, CAO Z, SUNDEN B Flow patterns and slug scaling of liquid-liquid flow in square microchannels[J]. International Journal of Multiphase Flow, 2019, 112: 27- 39
doi: 10.1016/j.ijmultiphaseflow.2018.12.009
[15]   陈珉芮, 钱锦远, 李晓娟, 等 十字型微通道中非定常分散相速度下液滴生成的数值分析[J]. 高校化学工程学报, 2018, 32 (3): 522- 528
CHEN Min-rui, QIAN Jin-yuan, LI Xiao-juan, et al Numerical simulation of droplet generation in cross-junction microchannel under changing dispersion phase velocities[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32 (3): 522- 528
doi: 10.3969/j.issn.1003-9015.2018.03.005
[16]   周乃香, 张井志, 林金品, 等 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报: 工学版, 2016, 50 (10): 1859- 1864
ZHOU Nai-xiang, ZHANG Jing-zhi, LIN Jin-pin, et al Numerical investigation on heat transfer and hydrodynamic characteristics of gas-liquid Taylor flow in capillaries[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 1859- 1864
[17]   GARSTECKI P, FUERSTMAN M J, STONE H A, et al Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6 (3): 437- 446
doi: 10.1039/b510841a
[18]   DE MENECH M, GARSTECKI P, JOUSSE F, et al Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595: 141- 161
doi: 10.1017/S002211200700910X
[19]   YAO C, LIU Y, CHAO X, et al Formation of liquid-liquid slug flow in a microfluidic t-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2017, 64 (1): 346- 357
[20]   XU J H, LI S W, TAN J, et al Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5 (6): 711- 717
doi: 10.1007/s10404-008-0306-4
[21]   CHRISTOPHER G F, NOHARUDDIN N N, TAYLOR J A, et al Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2008, 78 (3): 036317
[22]   魏丽娟, 朱春英, 付涛涛, 等 T型微通道内液滴尺寸的实验测定与关联[J]. 化工学报, 2013, 64 (2): 517- 523
WEI Li-juan, ZHU Chun-ying, FU Tao-tao, et al Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64 (2): 517- 523
doi: 10.3969/j.issn.0438-1157.2013.02.015
[1] Ding-hua HU,Shi-yu LIU. Numerical study on dynamic behaviors of Al2O3 nanofluid droplet impacting on solid wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 991-998.
[2] Yun-long QIU,Wen-jie HU,Chang-ju WU,Wei-fang CHEN. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 665-674.
[3] Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.
[4] Yu-qi HUANG,Zhuo-lie CHEN,Jun-qiang HU,Mei LI,Hao-yi NIU. Visual simulation of two-phase flow oscillating flow in piston cooling gallery[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 435-441.
[5] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[6] Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.
[7] Yu ZHANG,Kai-lin ZHANG,Yuan YAO. Impact of rotating and thermal effects on leakage performance of gearbox with axial labyrinth seal[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1656-1662.
[8] Shu-xin LIU,Zhong-yang LUO,Meng-shi LU,Ming-chun HE,Meng-xiang FANG,Hao-lin WANG. Process and characteristics of capture of particles by charged droplet and acoustic waves[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1282-1290.
[9] Chao SUN,De-qing MEI,Xing XU,Li-chang LI,Yin-nan YUAN. Evaporation characteristics of sessile droplet for fuel with CNT on a heated substrate[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 234-240.
[10] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[11] DAI Chao, JI Xian-bing, ZHOU Dong-dong, WANG Ye, XU Jin-liang. Behavioral characteristics of droplet collision to different wettability surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 36-42.
[12] SHEN Teng, WANG Jiong, HUANG Liu. Theoretical and experimental study on capillary burst valve under centrifugal environment[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1578-1584.
[13] WU Jiang hong, XUE Zhi qiang, JIN Peng, LI Hui xi. Temperature maldistribution in micro-channel heat exchanger applied to electrical vehicle’s heat pump air conditioning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1537-1544.
[14] SHENG De ren, SU Yun peng, SHI Xiang kun, CHEN Jian hong, LI Wei. Optical breakdown model of atomized water droplet induced by laser[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 949-954.
[15] ZHOU Ming yue, YANG Wei juan, DENG Chen, ZHOU Jun hu, LIU Jian zhong, CEN Ke fa. Experiments on hydrogen/methane/air catalytic combustion in micro tube[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2276-2281.