Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 695-703    DOI: 10.3785/j.issn.1008-973X.2021.04.011
土木工程     
山区高速列车车体动态当量泄漏面积阈值
万有财1(),张雷2,李明2,刘斌2,梅元贵1,*()
1. 兰州交通大学 甘肃省轨道交通力学应用工程实验室,甘肃 兰州 730070
2. 中车唐山机车车辆有限公司,河北 唐山 064099
Maximum dynamic equivalent leakage area while high-speed train passing through tunnels
You-cai WAN1(),Lei ZHANG2,Ming LI2,Bin LIU2,Yuan-gui MEI1,*()
1. Gansu Province Engineering Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou 730070, China
2. CRRC TANGSHAN Limited Company, Tangshan 064099, China
 全文: PDF(1224 KB)   HTML
摘要:

针对静态气密参数无法真实反映列车过隧道时的气密性能问题和车内压力舒适性问题,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法,数值模拟列车过隧道时的车外压力波动. 对泄漏的空气质量流量进行修正,采用当量泄漏面积法模拟高速列车通过隧道时的车内压力. 以山区高速铁路为背景,研究中国某型号动车组车体动态当量泄漏面积阈值,提出列车符合不同舒适性标准时的动态当量泄漏面积阈值建议. 结果表明:车内压力符合1 000 Pa/10 s标准下的当量泄漏面积更小,列车当量泄漏面积阈值的最小值随着车速的增加而减小,头、尾车和中间车当量泄漏面积阈值的建议值分别为23.2和45.6 cm2.

关键词: 高速列车隧道压力波当量泄漏面积一维流动模型    
Abstract:

The external pressure of coaches was simulated based on one-dimensional, compressible, non-homentropic and unsteady flow model and the method of characteristics of generalized Riemann variables aiming at problems of static air tightness parameters being not able to truly reflect air tightness performance and inside pressure comfort when the train passing through tunnels. The leaked air mass flow was corrected, and the equivalent leakage area method was used to obtain the interior pressure while the high-speed train passing through the tunnel. The maximum dynamic equivalent leakage area values of the different coaches were analyzed based on the background of Mountain passenger dedicated line while the pressure inside coaches meeting different comfort standards. The recommended dynamic equivalent leakage area values for the single train meeting different comfort standards at different speeds were given. The dynamic equivalent leakage area is the smallest when the pressure inside cars meets the standard of 1 000 Pa/10 s. The minimum equivalent leakage area values decrease with the increase of train speed. The recommended threshold values of the equivalent leakage area for the first/last and middle coaches are 23.2 cm2 and 45.6 cm2, respectively.

Key words: high-speed train    tunnel    pressure wave    equivalent leakage area    one-dimensional flow model
收稿日期: 2020-05-21 出版日期: 2021-05-07
CLC:  U 271  
基金资助: 中国铁路总公司系统性重大项目(P2018J003)
通讯作者: 梅元贵     E-mail: 18293134923@163.com;meiyuangui@163.com
作者简介: 万有财(1992—),男,博士生,从事列车空气动力学的研究. orcid.org/0000-0002-7307-5949. E-mail: 18293134923@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
万有财
张雷
李明
刘斌
梅元贵

引用本文:

万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.

You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.011        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/695

图 1  等效泄漏模型示意图
图 2  估算车厢当量泄漏面积阈值流程图
图 3  计算车外压力程序验证
类别 L /m S /m2 C /m v /(km·h?1
动车组 401.4 11.95 12.83 380
隧道 2812 100.0 35.45 ?
表 1  实车试验基本参数
图 4  计算车内压力程序验证
类别 S /m2 C /m Vd /m3 Vp /m3 Vm /m3
动车组 12.10 13.16 4.5 101.0 183.0
隧道 100.0 38.43 ? ? ?
表 2  列车与隧道的基本参数
图 5  单列车过隧道车内外压力波及车内每3 s内最大压力变化量时间历程曲线
图 6  符合不同舒适性标准的当量泄漏面积阈值变化曲线
隧道类型 LTU /km
中长隧道 1.0,2.0
长隧道 3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0
特长隧道 15.0,20.0
表 3  本文数值计算不同长度隧道表
cm2
标准 头车 中间车 尾车
500 Pa/s 127.1 189.4 129.4
800 Pa/3 s 71.0 119.4 71.1
1000 Pa/10 s 33.2 56.3 29.2
表 4  符合不同舒适性标准当量泄漏面积阈值的阈值
图 7  编组长度对当量泄漏面积阈值的影响规律
cm2
编组 头车 中间车 尾车
500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s
8 109.4 70.8 32.7 190.6 118.1 51.9 111.9 64.5 26.6
16 106.3 62.4 28.1 179.8 99.2 45.6 106.6 59.7 23.2
表 5  不同编组单列车当量泄漏面积阈值的阈值
图 8  列车速度对当量泄漏面积阈值的影响
cm2
v /(km·h?1 头车 中间车 尾车
500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s
250 231.9 113.5 62.6 441.0 218.7 92.3 238.7 122.6 43.1
300 164.0 85.2 42.3 259.4 153.7 73.4 176.3 93.9 36.6
350 127.1 71.0 33.2 189.4 119.4 56.3 129.4 71.1 29.2
400 106.3 62.4 28.1 179.8 99.2 45.6 106.6 59.7 23.2
表 6  单列16编组列车在不同速度等级下的当量泄漏面积阈值的最小值
图 9  当量泄漏面积阈值随隧道长度的变化曲线
km
v /(km·h?1 LTU /km
基于头车最大正压 基于尾车最大负压
250 1.482 2.890
300 1.345 2.073
350 1.260 1.575
400 1.206 1.242
表 7  不同速度下的最不利隧道长度
cm2
v /
(km·h?1
头车 中间车 尾车
500 Pa/s 800 Pa/3 s 1000 Pa/10 s 500 Pa/s 800 Pa/3 s 1000 Pa/10 s 500 Pa/s 800 Pa/3 s 1000 Pa/10 s
250 187.6 96.9 63.9 384.5 190.0 112.9 246.1 130.8 49.7
300 150.0 77.9 47.1 281.8 141.1 73.1 194.2 98.1 36.1
350 124.8 66.8 43.7 223.1 114.0 76.5 140.2 67.4 35.6
400 103.7 60.2 47.3 185.3 99.8 74.2 109.5 56.5 33.7
表 8  最不利隧道长度下的当量泄漏面积阈值的最小值
cm2
v /
(km·h?1
头/尾车 中间车
500
Pa/s
800
Pa/3 s
1000
Pa/10 s
500
Pa/s
800
Pa/3 s
1000
Pa/10 s
250 187.6 96.9 43.1 384.5 190.0 92.3
300 150.0 77.9 36.1 259.4 141.1 73.1
350 124.8 66.8 29.2 189.4 114.0 56.3
400 103.7 56.5 23.2 179.8 99.2 45.6
表 9  当量泄漏面积的建议值
1 GAWTHORPE R G Pressure effects in railway tunnels[J]. Rail International, 2000, 31: 10- 17
2 PALMERO N M, VARDY A Tunnel gradients and aural health criterion for train passengers[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2014, 228 (7): 821- 832
doi: 10.1177/0954409713490684
3 田红旗 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1- 9
TIAN Hong-qi Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1- 9
doi: 10.3321/j.issn:1671-1637.2006.01.001
4 肖京平, 黄志祥, 陈立 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35 (2): 1- 12
XIAO Jing-ping, HUANG Zhi-xiang, CHEN Li Review of aerodynamic investigations for high speed[J]. Mechanics in Engineering, 2013, 35 (2): 1- 12
doi: 10.6052/1000-0879-13-063
5 YAMAMOTO A. Aerodynamics of train and tunnel [C]// Proceeding of 1st International Conference on Vehicle Mechanics. Detroit: SAE, 1968: 151-163.
6 KLINGEL R Pressure-tight passenger coaches for new lines: fundamentals and possible solutions for airconditioning systems[J]. Zero Emission Vehicles-Glas. Annual, 1988, 112 (1): 10- 18
7 SIMA M. New unifying procedure for working with pressure tightness of rail passenger vehicles [C]// Proceeding of 11th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Sweden: BHR Group, 2003: 743-757.
8 KLAVER E C, KASSIES E. Dimensioning of tunnels for passenger comfort in Netherlands [C]// Proceeding of 10th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cranfield U K: BHR Group, 2000: 737-755.
9 余南阳, 梅元贵 高速铁路隧道压力波动主要影响参数研究[J]. 中国铁道科学, 2003, 24 (6): 67- 69
YU Nan-yang, MEI Yuan-gui Study on main parameters effecting pressure transients while train passing through tunnel[J]. China Railway Science, 2003, 24 (6): 67- 69
doi: 10.3321/j.issn:1001-4632.2003.06.016
10 张光鹏, 雷波 计算高速列车车内压力的热力学模型[J]. 铁道学报, 2006, 28 (1): 35- 38
ZHANG Guang-peng, LEI Bo The thermal dynamics model for calculating the interior pressure of high speed trains[J]. Journal of the China Railway Society, 2006, 28 (1): 35- 38
doi: 10.3321/j.issn:1001-8360.2006.01.008
11 陈春俊, 聂锡成, 唐猛 车外空气压力作用下的CRH2型动车组车内空气压力传递函数模型[J]. 中国铁道科学, 2013, 34 (4): 84- 88
CHEN Chun-jun, NIE Xi-cheng, TANG Meng Transfer function model of the air pressure inside CRH2 EMU under outside air pressure[J]. China Railway Science, 2013, 34 (4): 84- 88
doi: 10.3969/j.issn.1001-4632.2013.04.14
12 中华人民共和国铁道部. 动车组列车密封设计及试验规范: TB/T 3250—2010 [S]. 北京: 中国铁道出版社, 2011.
13 NAM S W A study on estimation of air tightness for train[J]. Journal of Korean Society for Railway, 2016, 19 (5): 576- 584
doi: 10.7782/JKSR.2016.19.5.576
14 梅元贵, 张成玉, 周朝晖, 等 单列高速列车通过特长隧道时耳感不适问题研究[J]. 机械工程学报, 2015, 51 (14): 100- 107
MEI Yuan-gui, ZHANG Cheng-yu, ZHOU Chao-hui, et al Research on the aural discomfort when a single train passes through a super long tunnel[J]. Journal of Mechanical Engineering, 2015, 51 (14): 100- 107
doi: 10.3901/JME.2015.14.100
15 李国清, 李明, 郭伟, 等 高速综合检测列车头车气密性评估[J]. 机车电传动, 2012, (3): 45- 48
LI Guo-qing, LI Ming, GUO Wei, et al Leading car air tightness assessment of high-speed inspection train[J]. Electric Drive for Locomotives, 2012, (3): 45- 48
doi: 10.3969/j.issn.1000-128X.2012.03.013
16 SIMA M, BARBONE L, GALEAZZO G, et al. Dynamic pressure tightness of very high speed train TR1000/V300 ZEFIRO [C]// Proceeding of the 11th World Congress on Railway Research. Milano: IEEJ, 2016: 1-6.
17 LIU T H, CHEN M Y, CHEN X D, et al Field test measurement of the dynamic tightness performance of high-speed trains and study on its influencing factors[J]. Measurement, 2019, 138 (1): 602- 613
18 张芯茹, 余以正, 梅元贵 更高速度下京沪高铁列车整车时间常数动态气密性阈值初探[J]. 铁道机车车辆, 2019, 39 (2): 113- 118
ZHANG Xin-ru, YU Yi-zheng, MEI Yuan-gui Preliminary study on dynamic air tightness threshold of time constant of Beijing-Shanghai high-speed railway train at higher speed[J]. Railway Locomotive and CAR, 2019, 39 (2): 113- 118
doi: 10.3969/j.issn.1008-7842.2019.02.25
19 李田, 戴志远, 张继业, 等 列车气密性静态泄漏理论模型与计算[J]. 交通运输工程学报, 2020, 20 (1): 150- 158
LI Tian, DAI Zhi-yuan, ZHANG Ji-ye, et al Theoretical model and calculation of static leakage for train air tightness[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (1): 150- 158
20 万有财, 李明, 张雷, 等 京沪高铁隧道背景下列车车体动态气密性当量泄漏面积阈值特征[J]. 振动与冲击, 2021, 40 (1): 29- 38
WAN You-cai, LI Ming, ZHANG Lei, et al Threshold characteristics of equivalent leakage area of train body dynamic air tightness under background of Beijing-Shanghai high speed railway tunnels[J]. Journal of Vibration and Shock, 2021, 40 (1): 29- 38
21 梅元贵, 王瑞丽, 许建林, 等 高速列车进入隧道诱发初始压缩波效应的数值模拟[J]. 计算力学学报, 2016, 33 (1): 95- 102
MEI Yuan-gui, WANG Rui-li, XU Jian-lin, et al Numerical simulation of initial compression wave induced by a high-speed train moving into a tunnel[J]. Chinese Journal of Computational Mechanics, 2016, 33 (1): 95- 102
doi: 10.7511/jslx201601015
22 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
23 张也影. 流体力学[M]. 北京: 高等教育出版社, 1999.
24 王建宇, 万晓燕, 吴剑 高速铁路隧道内瞬变气压和乘车舒适度准则[J]. 现代隧道技术, 2008, 45 (2): 1- 10
WANG Jian-yu, WAN Xiao-yan, WU Jian Air pressure transient in high speed railway tunnels and passenger comfort criteria[J]. Modern Tunneling Technology, 2008, 45 (2): 1- 10
doi: 10.3969/j.issn.1009-6582.2008.02.001
[1] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[2] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[3] 应宏伟,程康,俞建霖,徐日庆,裘志坚,詹晓波,秦建设,楼春晖. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.
[4] 王琪,谢坤,马严,丛群. 基于日志统计特征的DNS隧道检测[J]. 浙江大学学报(工学版), 2020, 54(9): 1753-1760.
[5] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[6] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.
[7] 蔡路,李田,张继业. 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报(工学版), 2020, 54(4): 804-815.
[8] 王灿,凌道盛,王恒宇. 软土结构性对基坑开挖及邻近地铁隧道的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 264-274.
[9] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125.
[10] 孙艳红,张捷,韩健,高阳,肖新标. 高速列车风道消声器传声特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1389-1397.
[11] 陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.
[12] 田彦朝,贺飞,张啸. 敞开式TBM护盾半径适应性设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2280-2288.
[13] 代文强,郑旭,郝志勇,邱毅. 采用能量有限元分析的高速列车车内噪声预测[J]. 浙江大学学报(工学版), 2019, 53(12): 2396-2403.
[14] 韩兴博,夏永旭,王永东,叶飞. 隧道衬砌抗弯承载能力概率劣化模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2175-2184.
[15] 张娜,李建斌,荆留杰,杨晨,陈帅. 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报(工学版), 2019, 53(10): 1977-1985.