Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (2): 330-337    DOI: 10.3785/j.issn.1008-973X.2021.02.013
土木工程、交通工程     
上跨拟建隧道的地下综合管廊预保护效果
崔允亮1(),李志远1,2,魏纲1,陈江3,周联英1
1. 浙大城市学院 土木工程系,浙江 杭州 310015
2. 绍兴文理学院 土木工程学院,浙江 绍兴 312000
3. 浙江交工集团股份有限公司,浙江 杭州 310051
Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel
Yun-liang CUI1(),Zhi-yuan LI1,2,Gang WEI1,Jiang CHEN3,Lian-ying ZHOU1
1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China
2. Civil Engineering College, Shaoxing University, Shaoxing 312000, China
3. Zhejiang Communications Construction Group Co. Ltd, Hangzhou 310051, China
 全文: PDF(1426 KB)   HTML
摘要:

针对地下综合管廊上跨拟建地铁隧道施工的情况,为了减少盾构施工对管廊的影响,在地下综合管廊施工时采取对管廊结构的预保护措施. 采用分布式光纤监测盾构施工对管廊结构的影响,并采用数值模拟手段分析不同预保护方案下盾构施工对管廊竖向位移的影响. 监测和分析结果表明:设置坑底加固联合减沉桩的预保护措施能有效控制盾构隧道施工对地下综合管廊变形的影响,预保护效果显著. 采用坑底加固可以有效减小管廊两端位移差;减沉桩的布桩方式对管廊沉降控制效果有重要影响;双线盾构隧道施工导致的管廊最大沉降发生在双线隧道之间部位,避开盾构线路在单节管廊两端和双线盾构隧洞之间部位设置减沉桩对管廊的保护效果更佳.

关键词: 盾构隧道预保护数值计算分布式光纤沉降地下综合管廊    
Abstract:

For the construction of the pipe gallery across the proposed subway tunnel, pre-protection measures for the pipe gallery structure were taken during the construction of the pipe gallery in order to reduce the impact of shield construction on the underground comprehensive pipe gallery. Distributed optical fibers were used to monitor the influence of shield construction on the pipe gallery structure. Numerical simulation method was used to analyze the influence of shield construction on the vertical displacement of the pipe gallery under different pre-protection schemes. Monitoring and analysis results show that the pre-protection measures of bottom reinforcement and anti-sinking piles can effectively control the influence of shield tunnel construction on the underground comprehensive pipe gallery, and the pre-protection effect is significant. The bottom reinforcement can effectively reduce the displacement difference between the two ends of the pipe gallery. The pile arrangement has an important influence on the settlement control effect of pipe gallery. The maximum settlement of the pipe gallery caused by the construction of the double-line shield tunnel occurred between the two lines. Better protection effect can be achieved by setting anti-sinking piles under two ends of single pipe gallery and between double-line tunnels, avoiding the path of shield tunnels.

Key words: shield tunnel    pre-protection    numerical simulation    distributed optical fiber    settlement    underground comprehensive pipe gallery
收稿日期: 2020-03-22 出版日期: 2021-03-09
CLC:  U 458.1  
基金资助: 国家自然科学基金资助项目(51808493);浙江省自然科学基金资助项目(LGF20E080007);浙江交工集团股份有限公司科研资助项目
作者简介: 崔允亮(1984—),男,副教授,博士,从事软土地基土与结构相互作用研究. orcid.org/0000-0002-0965-2385.E-mail: cuiyl@zucc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
崔允亮
李志远
魏纲
陈江
周联英

引用本文:

崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.

Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.02.013        http://www.zjujournals.com/eng/CN/Y2021/V55/I2/330

图 1  管廊与盾构隧道位置关系
土层 T/m γ/(kN·m?3 e IP/% w /%
① 填土 2.3 17.5 ? ? 34.0
② 黏土 3.6 17.8 0.915 18.9 30.0
③ 淤泥质粉质黏土 3.6 16.7 1.168 14.3 40.7
④ 淤泥质黏土 6.9 16.2 1.327 19.1 49.0
⑤ 圆砾 6.3 20.5 ? 14.6 ?
⑥ 全风化花岗岩 15.1 19.5 ? ? ?
⑦ 中风化花岗岩 12.2 22.0 ? ? ?
表 1  各土层物理性质参数
图 2  光纤布置与监测
图 3  盾构穿越后光纤监测应变差
土层 本构模型 E /kPa $E_{50}^{{\rm{ref}}}$ /kPa $E_{{\rm{oed}}}^{{\rm{ref}}}$ /kPa $E_{{\rm{ur}}}^{{\rm{ref}}}$ /kPa m R $ c $ /kPa $ \varphi $ /(°) e $\;\mu$
MC 9000 ? ? ? ? ? 0 12.0 0.93 0.30
HS ? 4830 4830 33810 0.73 0.58 20.0 11.0 0.92 0.30
HS ? 4140 4140 28980 0.85 0.79 15.0 14.0 1.20 0.30
HS ? 3780 3780 26460 0.68 0.93 12.0 11.5 1.20 0.30
MC 72000 ? ? ? ? ? 3.5 40.0 0.80 0.28
MC 38400 ? ? ? ? ? 20.0 30.0 0.80 0.28
MC 90000 ? ? ? ? ? 50.0 30.0 0.80 0.28
表 2  土体模型参数
结构 尺寸/mm γ/(kN·m?3 E /MPa $\;\mu$
盾构管片 ?=6200 25.4 34500 0.23
管廊 t=300、500 25.0 31500 0.23
减沉桩 ?=850 24.1 29500 0.23
注浆层 t=100 23.8 1000 0.30
盾壳 t=100 78.0 250000 0.20
加固层 t=4000 20.0 200 0.30
表 3  结构尺寸及材料参数
图 4  盾构隧道与既有管廊的位置关系
图 5  盾构通过后管廊竖向位移
工况 坑底加固 减沉桩 备注
1 无预保护措施
2 管廊两端设桩 实际工程方案,桩布置方式见图1
3 管廊两端设桩 仅在两端设桩
4 仅坑底加固
5 桩布置方式见图6
6 桩布置方式见图6
表 4  预保护结构分析工况设置
图 6  工况5、6减沉桩设置示意图
图 7  不同布桩方式的管廊沉降示意图
图 8  坑底加固与其他工况沉降对比
图 9  不同预保护方法沉降对比
图 10  各监测断面地表沉降
1 王立新, 汪珂, 李储军, 等 黄土地区地铁盾构隧道近距离下穿既有线影响规律及控制标准研究[J]. 铁道标准设计, 2019, 63 (10): 124- 130
WANG Li-xin, WANG Ke, LI Chu-jun, et al Study on the influence law and control standard of metro shield tunnel in loess Area[J]. Railway Standard Design, 2019, 63 (10): 124- 130
2 张晓清, 张孟喜, 李林, 等 多线叠交盾构隧道近距离穿越施工扰动机制研究[J]. 岩土力学, 2017, 38 (4): 1133- 1140
ZHANG Xiao-qing, ZHANG Meng-xi, LI Lin, et al Mechanism of approaching construction disturbance caused by multi-line overlapped shield tunnelling[J]. Rock and Soil Mechanics, 2017, 38 (4): 1133- 1140
3 丁智, 吴云双, 张霄, 等 软土盾构隧道近距离穿越既有地铁影响数值分析[J]. 中南大学学报: 自然科学版, 2018, 49 (3): 663- 671
DING Zhi, WU Yun-shuang, ZHANG Xiao, et al Numerical analysis of influence of shield tunnel in soft soil passing over existing nearby subway[J]. Journal of Central South University: Science and Technology, 2018, 49 (3): 663- 671
4 LIN X T, CHEN R P, WU N H, et al Deformation behaviors of existing tunnels caused by shield tunneling undercrossing with oblique angle[J]. Tunnelling and Underground Space Technology, 2019, 89: 78- 90
doi: 10.1016/j.tust.2019.03.021
5 张治国, 黄茂松, 王卫东 邻近开挖对既有软土隧道的影响[J]. 岩土力学, 2009, 30 (5): 1373- 1380
ZHANG Zhi-guo, HUANG Mao-song, WANG Wei-dong Responses of existing tunnels induced by adjacent excavation in soft soils[J]. Rock and Soil Mechanics, 2009, 30 (5): 1373- 1380
doi: 10.3969/j.issn.1000-7598.2009.05.033
6 许有俊 新建地铁隧道上穿既有隧道引起的结构隆起变形[J]. 中国铁道科学, 2014, 35 (6): 48- 54
XU You-jun Upheaval deformation induced by newly-built metro tunnel upcrossing existing tunnel[J]. China Railway Science, 2014, 35 (6): 48- 54
doi: 10.3969/j.issn.1001-4632.2014.06.08
7 SHI C, CAO C, LEI M, et al Effects of lateral unloading on the mechanical and deformation performance of shield tunnel segment joints[J]. Tunnelling and Underground Space Technology, 2016, 51: 175- 188
doi: 10.1016/j.tust.2015.10.033
8 张琼方 盾构近距离下穿对已建地铁隧道的位移影响及施工控制[J]. 岩土力学, 2016, 37 (12): 3561- 3568
ZHANG Qiong-fang Effect of nearby undercrossing tunneling on the deformation of existing metro tunnel and construction control[J]. Rock and Soil Mechanics, 2016, 37 (12): 3561- 3568
9 马健 盾构近距离多次下穿对既有隧道变形的影响分析[J]. 铁道建筑, 2016, (4): 64- 71
MA Jian Influence on existing tunnel deformation induced by shield tunnel multiple under passing with small spacing apart[J]. Railway Engineering, 2016, (4): 64- 71
doi: 10.3969/j.issn.1003-1995.2016.04.17
10 陈仁朋, 张品, 刘湛, 等 MJS水平桩加固在盾构下穿既有隧道中应用研究[J]. 湖南大学学报: 自然科学版, 2018, 45 (7): 103- 110
CHEN Ren-peng, ZHANG Pin, LIU Zhan, et al Application study of MJS horizontal column reinforcement in shield tunneling[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (7): 103- 110
11 邓如勇, 汪辉武, 戴兵, 等 兰州地铁1号线盾构下穿黄河强透水地层施工安全性研究[J]. 铁道建筑, 2016, (9): 57- 61
DENG Ru-yong, WANG Hui-wu, DAI Bing, et al Study on construction safety in case of lanzhou metro line No. 1 shield tunnel passing through strong permeable stratum under the yellow river[J]. Railway Engineering, 2016, (9): 57- 61
doi: 10.3969/j.issn.1003-1995.2016.09.15
12 刘方, 杜建明, 张文龙, 等 大直径泥水平衡盾构下穿既有地铁结构预加固方案研究[J]. 铁道勘察, 2020, 46 (1): 42- 48
LIU Fang, DU Jian-ming, ZHANG Wen-long, et al Study on pre reinforcement scheme of large diameter slurry balance shield under existing subway structure[J]. Railway Investigation and Surveying, 2020, 46 (1): 42- 48
13 陈晓伟, 王智金, 周恒, 等 地铁盾构隧道下穿铁路箱涵桥变形响应研究[J]. 防灾科技学院学报, 2018, 20 (3): 1- 7
CHEN Xiao-wei, WANG Zhi-jin, ZHOU Heng, et al Research on deformation responses of railway box culvert bridges under metro shield tunnels[J]. Journal of Institute of Disaster Prevention, 2018, 20 (3): 1- 7
doi: 10.3969/j.issn.1673-8047.2018.03.001
14 王宏伟, 张勇, 杨洋, 等 分布式光纤传感技术在盾构区间隧道监测中的应用[J]. 公路, 2018, 63 (3): 269- 273
WANG Hong-wei, ZHANG Yong, YANG Yang, et al Application of distributed optical fiber sensing technology in the monitoring of shield tunnel[J]. Highway, 2018, 63 (3): 269- 273
15 朱宁, 王兴 基于分布式光纤感测技术的苏州盾构隧道管片变形监测分析[J]. 江苏建筑, 2018, (6): 72- 75
ZHU Ning, WANG Xing Deformation monitoring analysis of Suzhou shield tunnel segment based on distributed optical fiber sensing technology[J]. Jiangsu Architecture, 2018, (6): 72- 75
doi: 10.3969/j.issn.1005-6270.2018.06.024
16 中华人民共和国住房和城乡建设部. 城市地下综合管廊运行维护及安全技术标准: GB51354—2019 [S]. 北京: 中国建筑工业出版社, 2019.
17 孙训方. 材料力学(Ⅰ)[M]. 北京: 高等教育出版社, 2010: 20.
18 张治国, 张孟喜 软土城区土压平衡盾构上下交叠穿越地铁隧道的变形预测及施工控制[J]. 岩石力学与工程学报, 2013, 32 (Suppl.2): 3428- 3439
ZHANG Zhi-guo, ZHANG Meng-xi Deformation prediction of subway tunnel induced by EPB shield in soft clay during above and down overlapped traversing process and its construction control[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.2): 3428- 3439
19 陈仁朋, 王诚杰, 鲁立, 等 开挖对地铁盾构隧道影响及控制措施[J]. 工程力学, 2017, 34 (12): 1- 13
CHEN Ren-peng, WANG Cheng-jie, LU Li, et al Influence of excavation on exist metro shield tunnel and control measures[J]. Engineering Mechanics, 2017, 34 (12): 1- 13
20 肖潇, 张孟喜, 吴惠明, 等 多线叠交盾构施工引起土体变形数值模拟分析[J]. 地下空间与工程学报, 2011, 7 (5): 884- 889
XIAO Xiao, ZHANG Meng-xi, WU Hui-ming, et al Numerical simulation analysis on ground settlements caused by multi-line shield tunnel[J]. Chinese Journal of Underground Space and Engineering, 2011, 7 (5): 884- 889
[1] 王东星,伍林峰,唐弈锴,徐学勇. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057.
[2] 苏伟林,李兴高,许宇,金大龙. 基于HJC模型的盾构刀具切削混凝土数值模拟[J]. 浙江大学学报(工学版), 2020, 54(6): 1106-1114.
[3] 余松霖,柯瀚,詹良通,孟涛,陈云敏,杨策. 工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析[J]. 浙江大学学报(工学版), 2020, 54(12): 2364-2376.
[4] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125.
[5] 吴海颖,朱鸿鹄,朱宝,齐贺. 基于分布式光纤传感的地下管线监测研究综述[J]. 浙江大学学报(工学版), 2019, 53(6): 1057-1070.
[6] 王忠瑾, 张日红, 王奎华, 方鹏飞, 谢新宇, 徐韩强, 李金柱. 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报(工学版), 2019, 53(1): 11-18.
[7] 梁小龙, 乔文丽, 赵西增. 分层环境中异重流运动问题的直接数值模拟[J]. 浙江大学学报(工学版), 2018, 52(5): 996-1001.
[8] 方俊, 王柏峰, 王伟铭, 张璇. 地下综合管廊公私合作项目定价机制[J]. 浙江大学学报(工学版), 2018, 52(4): 744-753.
[9] 杨春山, 魏立新, 莫海鸿, 何则干. 考虑衬砌变形与接头特征的盾构隧道纵向刚度[J]. 浙江大学学报(工学版), 2018, 52(2): 358-366.
[10] 庄妍, 程欣婷, 肖衡林, 刘奂孜, 周倍合, 李嘉俊. 桩承式路堤中加筋褥垫层的工作性状[J]. 浙江大学学报(工学版), 2018, 52(12): 2279-2284.
[11] 罗跃, 叶淑君, 吴吉春, 章艳红, 焦珣, 王寒梅. 地面沉降模型的参数全局敏感性[J]. 浙江大学学报(工学版), 2018, 52(10): 2007-2013.
[12] 范海贵, 陈志平, 徐烽, 唐小雨, 苏文强. 基于实测沉降的浮顶储罐变形分析[J]. 浙江大学学报(工学版), 2017, 51(9): 1824-1833.
[13] 胡亚元, 杨秋华. YinGraham流变模型沉降简化计算统一公式[J]. 浙江大学学报(工学版), 2016, 50(6): 1009-1017.
[14] 谭勇, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1048-1055.
[15] 杨果林, 段君义, 杨啸, 徐亚斌. 降雨与自然状态下膨胀土基床的振动特性[J]. 浙江大学学报(工学版), 2016, 50(12): 2319-2327.