Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 250-257    DOI: 10.3785/j.issn.1008-973X.2019.02.007
机械工程     
基于施工数据的TBM支撑推进协调控制系统
陈玉羲(),龚国芳*(),石卓,杨华勇
浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Coordinated control of gripper and thrust system for TBM based on construction data
Yu-xi CHEN(),Guo-fang GONG*(),Zhuo SHI,Hua-yong YANG
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1229 KB)   HTML
摘要:

针对全断面硬岩隧道掘进机(TBM)在较强推进负载冲击下撑靴打滑、偏软岩层段靴体压溃侧壁围岩等问题,提出基于推进力限定和支撑力恒定的支撑推进控制系统(TFRSFCGT),以及基于掘进方向推进分力恒定和支撑力恒定的支撑推进控制系统(TFCSFCGT). 建立TBM支撑推进机构力学模型,推导支撑油缸输出力、推进油缸输出力和支撑处围岩类别的耦合关系,设计2种基于新型控制策略的电液控制系统,利用AMESim软件和Matlab软件分别搭建液压系统模型和控制系统模型,最后搭建电液联合仿真模型. 仿真结果表明:TFRSFCGT系统和TFCSFCGT系统在提供系统所需推进力的前提下,能保持围岩实际所受支撑力恒定,最大超调量别为0.928%、0.378%;在相同负载特性下,TFCSFCGT系统掘进速度更快,而TFRSFCGT系统对负载冲击顺应性更强.

关键词: 隧道掘进机(TBM)支撑推进系统推进力限定推进力恒定支撑力恒定联合仿真    
Abstract:

The control system based on restricted thrust force and constant support force in gripper and thrust system (TFRSFCGT), and the control system based on constant thrust force along the tunneling direction and constant support force in gripper and thrust system (TFCSFCGT) were proposed, in order to solve the problems that the gripper shoes equipped in TBM failed to support the surrounding rock under a strong thrust load impact or crushed the surrounding rock in a soft rock formation. The coupling relationship among the output force of support cylinder, the output force of thrust cylinder and the type of surrounding rock at the place of supporting was derived after establishing the mechanical model of the gripper and thrust mechanism. The electro-hydraulic systems of these two control strategies were designed, then the hydraulic system models were set up in AMESim software and the control system models were set up in Matlab software, respectively. Finally, the performance of these two control strategies was compared and analyzed by using co-simulation method. Results showed that the TFRSFCGT system and the TFCSFCGT system can maintain the support force acting on the surrounding rock under the premise of providing required propulsion, and the maximum overshoot values were 0.928% and 0.378%, respectively. The TFCSFCGT system has a faster tunneling speed, while the TFRSFCGT system has better adaptability to load impact under the same load.

Key words: tunnel boring machine (TBM)    gripper and thrust system    restricted thrust force    constant thrust force    constant support force    co-simulation
收稿日期: 2018-04-25 出版日期: 2019-02-21
CLC:  U 455  
通讯作者: 龚国芳     E-mail: kiwicyx@163.com;gfgong@zju.edu.cn
作者简介: 陈玉羲(1993—),男,博士生,从事隧道掘进装备电液控制技术研究. orcid.org/0000-0003-2244-0667. E-mail: kiwicyx@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈玉羲
龚国芳
石卓
杨华勇

引用本文:

陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.

Yu-xi CHEN,Guo-fang GONG,Zhuo SHI,Hua-yong YANG. Coordinated control of gripper and thrust system for TBM based on construction data. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 250-257.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.007        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/250

图 1  开敞式TBM支撑推进机构简化示意图
图 2  支撑机构受力分析示意图
图 3  主梁水平方向受力分析示意图
图 4  TFRSFCGT系统控制策略简图
图 5  TFRSFCGT液压系统原理图
图 6  TFCSFCGT系统控制策略简图
图 7  TFCSFCGT液压系统原理图
参数 参数值 参数 参数值
v/(mm?s?1 (0,2.5) Dc/mm 380
x/mm (0,1 062.7) k/(N?m?1 2×109
Dt/mm 180 M/kg 11 773
Bv/(N?m?1?s) 3.2×108 $p_{\rm{g}}^{{\max }}$/MPa 6
表 1  仿真模型中系统主要参数
图 8  不同系统中液压油缸输出力和围岩支撑力变化曲线
图 9  3种不同系统的推进流量响应
图 10  3种不同系统的推进位移变化曲线
1 王梦恕 开敞式TBM在铁路长隧道特硬岩、软岩地层的施工技术[J]. 土木工程学报, 2005, 38 (5): 54- 58
WANG Meng-shu Construction technique of open TBM for long railway tunnels in very hard or soft rock strata[J]. China Civil Engineering Journal, 2005, 38 (5): 54- 58
doi: 10.3321/j.issn:1000-131X.2005.05.009
2 杜彦良, 杜立杰. 全断面岩石隧道掘进机系统原理与集成设计[M]. 武汉: 华中科技大学出版社, 2011: 1–16.
3 HUANG T, WANG X L, LIU H T, et al Force analysis of an open TBM gripping-thrusting-regripping mechanism[J]. Mechanism and Machine Theory, 2016, 98: 101- 113
doi: 10.1016/j.mechmachtheory.2015.12.003
4 YANG H Y, SHI H, GONG G F, et al Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction, 2009, 18 (7): 950- 956
doi: 10.1016/j.autcon.2009.04.005
5 EBRAHIM F, JAMAL R Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project[J]. Tunnelling and Underground Space Technology, 2009, 24 (4): 436- 446
doi: 10.1016/j.tust.2008.12.006
6 ERIKA P, FEDERICALUCIA S, JIAN Z Analysis and estimation of gripper TBM performances in highly fractured and faulted rocks[J]. Tunnelling and Underground Space Technology, 2016, 52: 44- 61
doi: 10.1016/j.tust.2015.11.017
7 LIU J, CAO P, DU C H, et al Effects of discontinuities on penetration of TBM cutters[J]. Journal of Central South University, 2015, 22 (9): 3624- 3632
doi: 10.1007/s11771-015-2903-1
8 施虎, 龚国芳, 杨华勇, 等 盾构掘进机推进力计算模型[J]. 浙江大学学报: 工学版, 2011, 45 (1): 126- 131
SHI Hu, GONG Guo-fang, YANG Hua-yong, et al Determination of thrust force for shield tunneling machine[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (1): 126- 131
9 霍军周, 杨静, 孙伟, 等 不同TBM支撑结构形式下的围岩稳定性分析[J]. 东北大学学报: 自然科学版, 2014, 35 (11): 1602- 1606
HUO Jun-zhou, YANG Jing, SUN Wei, et al Stability analysis of surrounding rock under different TBM supporting forms[J]. Journal of Northeastern University: Natural Science, 2014, 35 (11): 1602- 1606
doi: 10.3969/j.issn.1005-3026.2014.11.019
10 RAO Y Y, GONG G F, YANG X, et al. Research on geologic adaptive control of ground pressure for single gripping TBM [C]// International Conference on Control, Automation and Information Sciences. Changchun: IEEE, 2015: 7–11.
11 孙伟, 凌静秀, 霍军周, 等 TBM水平支撑不同接触面积下的围岩稳定性分析[J]. 哈尔滨工程大学学报, 2014, 50 (21): 92- 98
SUN Wei, LING Jing-xiu, HUO Jun-zhou, et al Stability analysis of surrounding rock of TBM gripper with different contact areas[J]. Journal of Harbin Engineering University, 2014, 50 (21): 92- 98
12 WU Y, TAO J, LIU C, et al. Stiffness modeling of thrust cylinder in hard rock tunnel boring machine [C]// International Conference on Fluid Power and Mechatronics. Harbin: IEEE, 2015: 157–162.
13 YAO J, XIA Y, CHENG Y, et al. Endocrine intelligent control of thrust hydraulic system for TBM [C]//International Conference on Intelligent Robotics and Applications. South Korea: Springer, 2013: 720–726.
14 牛文文. TBM支撑推进机构掘进性能分析[D]. 天津: 天津大学, 2014: 10–15.
NIU Wen-wen. Analysis on excavating performance of gripper and thrust mechanism of TBM [D]. Tianjin: Tianjin University, 2014: 10–15.
15 彭欢, 张怀亮, 袁坚, 等 硬岩掘进机比例调速阀选型方法[J]. 机械工程学报, 2014, 50 (21): 92- 98
PENG Huan, ZHANG Huai-liang, YUAN Jian, et al Tunnel boring machine proportional flow control valve selection method[J]. Journal of Mechanical Engineering, 2014, 50 (21): 92- 98
16 LIU Z B, XIE H B, YANG H Y. Analysis and comparison of two different hydraulic thrust systems on shield tunneling machine [C]// IEEE/ASME International Conference Montreal on Advanced Intelligent Mechatronics. Montreal: IEEE, 2010: 563-568.
17 LIU Z B, XIE H B, YANG H Y. Simulation analysis of pressure regulation of hydraulic thrust system on a shield tunneling machine [C]// International Conference on Intelligent Robotics and Applications. Singopore: Springer, 2009: 493–503.
18 龚秋明, 佘祺锐, 侯哲生, 等 高地应力作用下大理岩岩体的TBM掘进试验研究[J]. 岩石力学与工程学报, 2010, 29 (12): 2522- 2532
GONG Qiu-ming, SHE Qi-rui, HOU Zhe-sheng, et al Experimental study of TBM penetration in marble rock mass under high geostress[J]. Chinese Journal of Rock Mechanicsand Engineering, 2010, 29 (12): 2522- 2532
19 ZHANG L M, WU X G, SKIBNIEWSKI M J Simulation-based analysis of tunnel boring machine performance in tunneling excavation[J]. Journal of Computing in Civil Engineering, 2015, 30 (4): 04015073
20 GAO X D, YANG J X, CHEN K. Study on thrust hydraulic system of TBM based on AMESim and MATLAB/Simulink interface [C]// International Conference on Mechatronics, Materials, Chemistry and Computer Engineering. Xi’an: Atlantis Press, 2015: 2809-2814.
21 郝培, 余海东, 赵勇 考虑隧道表面特性的硬岩全断面掘进装备撑靴接触界面刚度分析[J]. 上海交通大学学报, 2014, 48 (6): 827- 832
HAO Pei, YU Hai-dong, ZHAO Yong Normal stiffness of tunnel surface contacting with thrusting boots of TBM with various surface characteristics[J]. Journal of Shanghai Jiaotong University, 2014, 48 (6): 827- 832
[1] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[2] 陈浩,王新杰,王炅,席占稳,曹云. 基于克里金模型的微电热驱动器优化设计[J]. 浙江大学学报(工学版), 2020, 54(8): 1490-1496.
[3] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[4] 张雷,徐海军,邹腾安,徐小军,常雨康. 嵌套Z轴式水下矢量推进系统建模与特性分析[J]. 浙江大学学报(工学版), 2020, 54(3): 450-458.
[5] 吴海东,司振立. 基于线性矩阵不等式的智能车轨迹跟踪控制[J]. 浙江大学学报(工学版), 2020, 54(1): 110-117.
[6] 田彦朝,贺飞,张啸. 敞开式TBM护盾半径适应性设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2280-2288.
[7] 张娜,李建斌,荆留杰,杨晨,陈帅. 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报(工学版), 2019, 53(10): 1977-1985.
[8] 李劲林, 王佳斌, 何闻. 非接触式定位隔振平台机电联合仿真分析[J]. 浙江大学学报(工学版), 2019, 53(1): 146-157.
[9] 刘建琴, 邢振华, 宾怀成, 郭伟. 复合岩层地质下硬岩隧道掘进机滚刀布局方法[J]. 浙江大学学报(工学版), 2019, 53(1): 166-173.
[10] 王超, 龚国芳, 杨华勇, 周建军, 段理文, 张亚坤. NSVR硬岩隧道掘进机刀盘扭矩预测分析[J]. 浙江大学学报(工学版), 2018, 52(3): 479-486.
[11] 夏毅敏, 钱聪, 李正光, 梅勇兵. 隧道掘进机支撑推进系统振动特性[J]. 浙江大学学报(工学版), 2018, 52(2): 233-239.
[12] 李明达,隗海林,门玉琢,包翠竹. 基于实际换挡规律的卡车列队行驶起步控制[J]. 浙江大学学报(工学版), 2016, 50(5): 887-892.
[13] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.
[14] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(2): 0-.
[15] 张振, 龚国芳, 吴伟强, 刘统, 饶云意, 周建军. 硬岩隧道掘进机推进系统姿态自适应控制[J]. 浙江大学学报(工学版), 2015, 49(10): 1870-1877.