Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (2): 264-274    DOI: 10.3785/j.issn.1008-973X.2020.02.007
土木与交通工程     
软土结构性对基坑开挖及邻近地铁隧道的影响
王灿1,2,3(),凌道盛1,2,3,王恒宇2,3,*()
1. 浙江大学 岩土工程研究所,浙江 杭州 310058
2. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058
3. 浙江大学宁波理工学院 土木建筑工程学院,浙江 宁波 315100
Influence of soft clay structure on pit excavation and adjacent tunnels
Can WANG1,2,3(),Dao-sheng LING1,2,3,Heng-yu WANG2,3,*()
1. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. School of Civil Engineering and Architecture, Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China
 全文: PDF(1629 KB)   HTML
摘要:

为了研究软土地基结构性改变对基坑开挖围护墙变形、地表沉降及其邻近地铁隧道位移和弯矩的影响,针对宁波粉质黏土,采用在重塑土中掺入盐粒和不同质量分数水泥的方式制备人工结构性土,开展一维压缩试验和三轴试验研究原状土与人工结构性土的工程特性,分别通过压缩性指标、抗剪强度指标和结构屈服应力验证和建立水泥质量分数与土体结构性之间的联系;采用Plaxis2D,分析土体结构性改变对基坑开挖过程中围护墙水平位移、地表沉降及其邻近地铁隧道的影响. 研究结果表明,当水泥质量分数为2%时,其压缩性指标、抗剪强度指标和结构屈服应力与原状土基本一致;随着土体结构性降低,扰动度增加,围护墙水平位移、地表沉降和隧道位移急剧增大,其中隧道对于土体扰动度最为敏感,位移增长趋势最为明显,当扰动度为39%时,隧道位移会超过规范允许值;当隧道距离基坑较近时,由于隧道的约束作用,围护墙水平位移和地表沉降较小,但是隧道位移和弯矩会相应增大.

关键词: 人工结构性土扰动度室内试验基坑开挖隧道    
Abstract:

One-dimensional compression test and triaxial test were conducted based on the undisturbed silty clay of Ningbo and artificial structural soils, in order to analyze the influence of soil structure on deformation of retaining wall, ground settlement and displacement and bending moment of adjacent tunnels during pit excavation. The artificial structural soils were made by adding salt and cement of different mass fractions in the remolded soil. The relationship between mass fraction of cement and soil structure was verified and established through compressibility indexes, shear strength indexes and yield stress. The Plaxis2D was used to analyze the influence of soil structure on horizontal displacement of retaining walls, settlement of ground surface and adjacent tunnels. Results show that when the mass fraction is 2%, the compressibility indexes, shear strength indexes and structural yield stress are basically the same as that of the undisturbed soil. As the structure of the soil decreases, namely the degree of disturbance increases, the displacements of the retaining walls, ground surface and adjacent tunnels increase rapidly. The tunnel is most sensitive to the degree of disturbance, and its displacement growth trend is the most obvious. When the disturbance degree reaches 39%, the tunnel displacement exceeds the allowable value. When the tunnel is closer to the pit, the displacements of retaining wall and ground surface decrease due to the the constraint effect of the tunnel, while the tunnel displacement and bending moment increase accordingly.

Key words: artificial structured soil    disturbance degree    laboratory test    pit excavation    tunnel
收稿日期: 2018-12-31 出版日期: 2020-03-10
CLC:  TU 411  
基金资助: 国家重点研发计划资助项目(2016YFC0800200);国家“973”重点基础研究发展规划资助项目(2014CB047000);浙江省自然科学基金资助项目(LQ18E080001);浙江省教育厅科研资助项目(Y201636901);软弱土与环境土工教育部重点实验室(浙江大学)开放基金资助项目(2019P02)
通讯作者: 王恒宇     E-mail: sprinkling@zju.edu.cn;wanghengyu@vip.163.com
作者简介: 王灿(1993—),男,硕士生,从事隧道及地下工程研究. orcid.org/0000-0003-1926-0016. E-mail: sprinkling@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王灿
凌道盛
王恒宇

引用本文:

王灿,凌道盛,王恒宇. 软土结构性对基坑开挖及邻近地铁隧道的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 264-274.

Can WANG,Dao-sheng LING,Heng-yu WANG. Influence of soft clay structure on pit excavation and adjacent tunnels. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 264-274.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.02.007        http://www.zjujournals.com/eng/CN/Y2020/V54/I2/264

土样 Gs w/% γ/(kN?m?3 ρd /(g?cm?3 wL/% wP/%
粉质黏土 2.73 39 17.5 1.29 36 20
表 1  宁波地区粉质黏土基本物性指标
图 1  试验用固结仪和三轴仪
图 2  一维压缩试验的压缩曲线
土样 α1-2/MPa?1 Es1?2/MPa Cc
原状土 0.833 2.487 0.278
wc=2.0% 0.837 2.466 0.279
wc=1.5% 0.893 2.286 0.298
wc=1.0% 1.006 2.004 0.335
wc=0.5% 1.065 1.854 0.355
重塑土 1.095 1.744 0.365
表 2  不同结构性土的压缩性指标
图 3  压缩性指标与水泥质量分数拟合曲线
图 4  不同结构性土的应力-应变曲线
图 5  有效抗剪强度指标与水泥质量分数关系曲线
土样 结构屈服应力/kPa SD/%
原状土 132 ?
wc=2.0% 127 4
wc=1.5% 108 18
wc=1.0% 80 40
wc=0.5% 50 62
重塑土 23 83
表 3  不同结构性土体扰动度评价
图 6  扰动度与水泥质量分数拟合曲线
参数 取值
$E_{\rm{oed}}^{\rm{ref}} $ $E_{\rm{oed}}^{\rm{ref}} $=0.9~1.1Es1-2[31]
$E_{\rm{50}}^{\rm{ref}} $ $E_{\rm{50}}^{\rm{ref}}=1.2E_{\rm{oed}}^{\rm{ref}} $[31]
$E_{\rm{ur}}^{\rm{ref}} $ $E_{\rm{ur}}^{\rm{ref}} $=6.7~8.4 $E_{\rm{50}}^{\rm{ref}} $[32]
ψ 对于黏性土,一般取0[30]
m 黏性土一般取0.5~1.0[28],取0.8[33]
μur 0.2[30]
pref 100 kPa[30]
Rf 0.9[34-35]
K0 1?sin $\varphi '$[36]
$G_{\rm{0}}^{\rm{ref}} $ $G_{\rm{0}}^{\rm{ref}} $=3.5~5.0 $E_{\rm{ur}}^{\rm{ref}} $[29]
表 4  HSS模型部分参数
土样 $c'$ /kPa $\varphi '$ /(°) $E_{\rm{oed}}^{\rm{ref}}$ /kPa $E_{\rm{50}}^{\rm{ref}}$ /kPa $E_{\rm{ur}}^{\rm{ref}}$ /kPa K0 $G_{\rm{0}}^{\rm{ref}}$ /kPa γ0.7 /10?4 Rinter
原状土 16.2 22.42 2 487 2 984 20 891 0.619 83 563 7.1 0.7
wc=2.0% 16.8 23.18 2 466 2 959 20 714 0.607 82 858 7.4 0.7
wc=1.5% 11.8 22.32 2 286 2 743 19 202 0.620 76 810 7.2 0.7
wc=1.0% 7.1 24.10 2 004 2 405 16 833 0.591 67 334 8.1 0.7
wc=0.5% 4.5 25.90 1 854 2 225 15 574 0.563 62 294 9.0 0.7
重塑土 3.9 26.02 1 744 2 093 14 650 0.562 58 598 9.5 0.7
表 5  不同结构性土主要参数
围护结构 单元类型 EA /(107 kN?m?1 EI /(105 kN·m2?m?1 ω /(kN·m?1·m?1 μ Lspa /m
隧道 板单元 1.4 1.43 8.0 0.10 ?
围护墙 板单元 2.0 16.70 8.0 0.15 ?
钢筋混凝土支撑 梁单元 0.6 3.00 ? 0.15 4
钢支撑 梁单元 0.2 0.90 ? 0.20 3
表 6  围护结构及隧道计算参数
图 7  临近地铁隧道基坑开挖模型示意图
工况 地基土类型
1 原状土
2 人工结构性土1(wc=2.0%,SD=4%)
3 人工结构性土2(wc=1.5%,SD=18%)
4 人工结构性土3(wc=1.0%,SD=40%)
5 人工结构性土4(wc=0.5%,SD=62%)
6 重塑土(SD=83%)
表 7  不同结构性软土地基的计算工况
图 8  开挖完成后土体位移场示意图
图 9  不同结构性地基中开挖后围护墙水平位移
图 10  不同结构性地基中开挖后地表沉降
图 11  不同结构性地基中各级开挖后隧道绝对位移
图 12  不同结构性地基中各级开挖后隧道所受最大弯矩
内容 控制值
围护墙水平位移 0.14% he
地表沉降 0.10% he
隧道位移 20 mm
表 8  变形控制标准
图 13  扰动度对位移影响曲线
图 14  扰动度对隧道所受最大弯矩影响曲线
1 BURFORD D Heave of tunnels beneath the Shell Centre, London, 1959-1986[J]. Geotechnique, 1988, 38 (1): 135- 137
doi: 10.1680/geot.1988.38.1.135
2 MARTA D Tunnel complex unloaded by a deep excavation[J]. Computers and Geotechnics, 2001, 28 (6): 469- 493
3 黄茂松, 王卫东, 郑刚 软土地下工程与深基坑研究进展[J]. 土木工程学报, 2012, (6): 146- 161
HUANG Mao-song, WANG Wei-dong, ZHENG Gang A review of recent advances in the underground engineering and deep excavations in soft soils[J]. China Civil Engineering Journal, 2012, (6): 146- 161
4 张治国, 张孟喜, 王卫东 基坑开挖对临近地铁隧道影响的两阶段分析方法[J]. 岩土力学, 2011, 32 (7): 2085- 2092
ZHANG Zhi-guo, ZHANG Meng-xi, WANG Wei-dong Two-stage method for analyzing effects on adjacent metro tunnels due to foundation pit excavation[J]. Rock and Soil Mechanics, 2011, 32 (7): 2085- 2092
doi: 10.3969/j.issn.1000-7598.2011.07.028
5 杨雨冰, 周彪, 谢雄耀 邻近基坑施工作用下盾构隧道横向变形及开裂特性研究[J]. 岩石力学与工程学报, 2016, 35 (Suppl.2): 4082- 4093
YANG Yu-bing, ZHOU Biao, XIE Xiong-yao Study on transverse deformation and cracking property of shield-driven tunnel induced by adjacent excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (Suppl.2): 4082- 4093
6 郑刚, 崔涛, 姜晓婷 砂土层中盾构隧道局部破坏引发连续破坏的机理研究[J]. 岩土工程学报, 2015, 37 (9): 1556- 1571
ZHENG Gang, CUI Tao, JIANG Xiao-ting Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (9): 1556- 1571
doi: 10.11779/CJGE201509002
7 LIMITEDP M Sealing sorenberg success[J]. Tunnels and Tunnelling International, 2001, 11: 5
8 徐长节, 孙凤明, 陈金友, 等 基坑相邻地铁隧道变形与应力控制措施[J]. 土木建筑与环境工程, 2013, (Suppl.1): 75- 80
XU Chang-jie, SUN Feng-ming, CHEN Jin-you, et al Analysis on the deformation and stress control measures of metro tunnel near a foundation pit[J]. Journal of Civil, Architectural and Environmental Engineering, 2013, (Suppl.1): 75- 80
9 ZHENG G, WEI S W Numerical analyses of influence of overlying pit excavation on existing tunnels[J]. Journal of Central South University of Technology, 2008, 15 (Suppl.2): 69- 75
10 HUANG H, HUANG X, ZHANG D Centrifuge modelling of deep excavation over existing tunnels[J]. Geotechnical Engineering, 2015, 167 (1): 3- 18
11 SHI J W. Investigation of three-dimensional tunnel responses due to basement excavation [D]. HongKong: The Hong Kong University of Science and Technology, 2015.
12 蒋明镜, 沈珠江 结构性黏土试样人工制备方法研究[J]. 水利学报, 1997, (1): 56- 61
JIANG Ming-jing, SHEN Zhu-jiang A method of artificial preparation of structured clay samples[J]. Journal of Hydraulic Engineering, 1997, (1): 56- 61
doi: 10.3321/j.issn:0559-9350.1997.01.009
13 刘恩龙. 岩土结构块破损机理与二元介质模型研究[D]. 北京: 清华大学, 2005.
LIU En-long. Study on damage mechanism and binary medium model of geotechnical structure blocks [D]. Beijing: Tinghua University, 2005.
14 刘恩龙, 沈珠江 人工制备结构性土力学特性试验研究[J]. 岩土力学, 2007, 28 (4): 679- 683
LIU En-long, SHEN Zhu-jiang Experimental study on mechanical properties of artificially structured soils[J]. Rock and Soil Mechanics, 2007, 28 (4): 679- 683
doi: 10.3969/j.issn.1000-7598.2007.04.009
15 胡琦, 许四法, 陈仁朋, 等 深基坑开挖土体扰动及其对邻近地铁隧道的影响分析[J]. 岩土工程学报, 2013, 35 (Suppl.2): 537- 541
HU Qi, XU Si-fa, CHEN Ren-peng, et al Influence of soil disturbance on metro tunnel in soft clay due to excavation of deep foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (Suppl.2): 537- 541
16 雷华阳, 仇王维, 丁小冬, 等 人工结构性土的次固结特性研究[J]. 天津大学学报, 2015, (11): 995- 1000
LEI Hua-yang, QIU Wang-wei, DING Xiao-dong, et al Characteristics of secondary consolidation considering the structure of artificial soil[J]. Journal of Tianjin University: Science and Technology, 2015, (11): 995- 1000
17 陈仁朋, 王诚杰, 鲁立, 等. 开挖对地铁盾构隧道影响及控制措施[C] // 全国结构工程学术会议. 长沙: [s.n.], 2017: 1-13.
CHEN Ren-peng, WANG Cheng-jie, LU Li, et al. Influence of excavation on exist metro shield tunnel and control measures [C]// National Conference on Structural Engineering. Changsha: [s.n.], 2017: 1-13.
18 HUANG X, SCHWEIGER H F, HUANG H Influence of deep excavations on nearby existing tunnels[J]. International Journal of Geomechanics, 2013, 13 (2): 170- 180
doi: 10.1061/(ASCE)GM.1943-5622.0000188
19 BENZ T. Small strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2006.
20 陈仁朋, 叶跃鸿, 王诚杰, 等 大型地下通道开挖对下卧地铁隧道上浮影响[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1269- 1277
CHEN Ren-peng, YE Yue-hong, WANG Chen-jie, et al Influence of open-cut tunneling on uplift behavior of underlying metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1269- 1277
21 中华人民共和国建设部. 土工试验方法标准: GBT50123-1999 [S]. 北京: 中国标准出版社, 1999: 16-19.
22 黄星迪. 饱和结构性土的结构性强弱的室内试验确定研究[D]. 杭州: 浙江工业大学, 2015.
HUANG Xing-di. The laboratory testresearch of saturation structured soil on the structural strength [D]. Hangzhou: Zhejiang University of Technology, 2015.
23 张彤炜, 徐海波, 邓永锋 结构性软黏土损伤变量与扰动度的相关性研究[J]. 岩土力学, 2015, 36 (4): 958- 964
ZHANG Tong-wei, XU Hai-bo, DENG Yong-feng A study of the correlation between the damage variable anddisturbance degree of structural soft clay[J]. Rock and Soil Mechanics, 2015, 36 (4): 958- 964
24 HVORSLEVM J. Subsurface exploration and sampling of soils for civil engineering purposes [M]// Waterways experiment station. Vicksburg: [s.n.], 1949: 22-100.
25 LADD C C The strength of 'undisturbed' clay determined from undrained tests[J]. ASTM STP, 1963, 85: 361- 365
26 RAYMONDG P, TOWNSEND D L, LOJKASEK M J The effect of sampling on the undrained soil properties of a leda soil[J]. Canadian Geotechnical Journal, 1900, 8 (8): 546- 557
27 NAGARAJ T S Analysis and assessment of sampling disturbance of soft sensitive clays[J]. Géotechnique, 2003, 53 (7): 679- 683
doi: 10.1680/geot.2003.53.7.679
28 徐永福 土体受施工扰动影响程度的定量化识别[J]. 大坝观测与土工测试, 2000, 24 (2): 8- 10
XU Yong-fu Quantitative determination of disturbance degree of soils influenced by construction[J]. Dam Observation and Soil Testing, 2000, 24 (2): 8- 10
29 王卫东, 王浩然, 徐中华 上海地区基坑开挖数值分析中土体HS-Small模型参数的研究[J]. 岩土力学, 2013, 34 (6): 1766- 1774
WANG Wei-dong, WANG Hao-ran, XU Zhong-hua Study of parameters of HS-Small model used in numerical analysis of excavations in Shanghai area[J]. Rock and Soil Mechanics, 2013, 34 (6): 1766- 1774
30 BRINKGREVE R B J, BROERE W. Plaxis material models manual [M]. Netherlands: [s.n.], 2006.
31 王卫东, 王浩然, 徐中华 基坑开挖数值分析中土体硬化模型参数的试验研究[J]. 岩土力学, 2012, 33 (8): 2283- 2290
WANG Wei-dong, WANG Hao-ran, XU Zhong-hua Experimental study of parameters of hardening soil model for numerical analysis of excavations of foundation pits[J]. Rock and Soil Mechanics, 2012, 33 (8): 2283- 2290
doi: 10.3969/j.issn.1000-7598.2012.08.008
32 梁发云, 贾亚杰, 丁钰津, 等 上海地区软土HSS模型参数的试验研究[J]. 岩土工程学报, 2017, 39 (2): 269- 278
LIANG Fa-yun, JIA Ya-jie, DING Yu-jin, et al Experimental study on parameters of HSS model for soft soils in Shanghai[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (2): 269- 278
doi: 10.11779/CJGE201702010
33 徐中华, 王建华, 王卫东 主体地下结构与支护结构相结合的复杂深基坑分析[J]. 岩土工程学报, 2006, 28: 1355- 1359
XU Zhong-hua, WANG Jian-hua, WANG Wei-dong Analysis of a complicated deep excavations supported by substructures[J]. Chinese Journal of Geotechnical Engineering, 2006, 28: 1355- 1359
doi: 10.3321/j.issn:1000-4548.2006.z1.010
34 MEDINA D G Z. Semi-empirical method for designing excavation support systems based on deformation control [D]. Lexington: University of Kentucky, 2007.
35 SCHWEIGER H F. Design of deep excavations with FEM-influence of constitutive model and comparison of EC7 design approaches [C]// Proceedings of the 2010 Earth Retention Conference, ASCE. Washington: ASCE, 2010.
36 GAO D Z, WEI D D, HU Z X Geotechnical properties of Shanghai soils and engineering applications[J]. Marine Geotechnology and Near-shore/Offshore Structures, 1986, 923: 161- 177
37 ZHENG G, DU Y M, CHENG X S, et al Characteristics and prediction methods for tunnel deformations induced by excavations[J]. Geomechanics and Engineering, 2017, 12 (3): 361- 397
doi: 10.12989/gae.2017.12.3.361
38 王卫东, 徐中华 预估深基坑开挖对周边建筑物影响的简化分析方法[J]. 岩土工程学报, 2010, (Suppl.1): 32- 38
WANG Wei-dong, XU Zhong-hua Simplified analysis method for evaluating excavation-induced damage of adjacent buildings[J]. Chinese Journal of Geotechnical Engineering, 2010, (Suppl.1): 32- 38
39 上海市市政工程管理局. 上海市地铁基坑工程施工规程: SZ-08-2000 [S]. 北京: 人民交通出版社, 2000: 3.
40 刘庭金 地铁盾构隧道弯矩和变形控制值研究[J]. 隧道建设, 2010, (Suppl.1): 109- 112
LIU Ting-jin Study on control values of bending moment and deformation of shield-bored metro tunnels[J]. Tunnel Construction, 2010, (Suppl.1): 109- 112
[1] 万有财,张雷,李明,刘斌,梅元贵. 山区高速列车车体动态当量泄漏面积阈值[J]. 浙江大学学报(工学版), 2021, 55(4): 695-703.
[2] 毛奕喆,龚国芳,周星海,王飞. 基于马尔可夫过程和深度神经网络的TBM围岩识别[J]. 浙江大学学报(工学版), 2021, 55(3): 448-454.
[3] 崔允亮,李志远,魏纲,陈江,周联英. 上跨拟建隧道的地下综合管廊预保护效果[J]. 浙江大学学报(工学版), 2021, 55(2): 330-337.
[4] 应宏伟,程康,俞建霖,徐日庆,裘志坚,詹晓波,秦建设,楼春晖. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.
[5] 王琪,谢坤,马严,丛群. 基于日志统计特征的DNS隧道检测[J]. 浙江大学学报(工学版), 2020, 54(9): 1753-1760.
[6] 王飞,龚国芳,段理文,秦永峰. 基于XGBoost的隧道掘进机操作参数智能决策系统设计[J]. 浙江大学学报(工学版), 2020, 54(4): 633-641.
[7] 黄伟明,王金昌,徐日庆,杨仲轩,徐荣桥. 基于弹性地基曲梁理论的盾构隧道管片分析方法[J]. 浙江大学学报(工学版), 2020, 54(4): 787-795.
[8] 张子新,张家奇,黄昕,庄欠伟. 盾构隧道密封垫长期防水性能预测的试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 118-125.
[9] 何绍衡,夏唐代,李连祥,于丙琪,刘泽勇. 地下水渗流对悬挂式止水帷幕基坑变形影响[J]. 浙江大学学报(工学版), 2019, 53(4): 713-723.
[10] 陈玉羲,龚国芳,石卓,杨华勇. 基于施工数据的TBM支撑推进协调控制系统[J]. 浙江大学学报(工学版), 2019, 53(2): 250-257.
[11] 田彦朝,贺飞,张啸. 敞开式TBM护盾半径适应性设计[J]. 浙江大学学报(工学版), 2019, 53(12): 2280-2288.
[12] 韩兴博,夏永旭,王永东,叶飞. 隧道衬砌抗弯承载能力概率劣化模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2175-2184.
[13] 张娜,李建斌,荆留杰,杨晨,陈帅. 基于隧道掘进机掘进过程的岩体状态感知方法[J]. 浙江大学学报(工学版), 2019, 53(10): 1977-1985.
[14] 吴昌胜, 朱志铎. 不同隧道施工方法引起地层损失率的统计分析[J]. 浙江大学学报(工学版), 2019, 53(1): 19-30.
[15] 刘建琴, 邢振华, 宾怀成, 郭伟. 复合岩层地质下硬岩隧道掘进机滚刀布局方法[J]. 浙江大学学报(工学版), 2019, 53(1): 166-173.