Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (4): 642-649    DOI: 10.3785/j.issn.1008-973X.2020.04.002
机械工程、电气工程     
双程形状记忆效应的唯象动力学模型
吕福在1(),胡宇天2,伍建军1,王林翔2,*()
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
2. 浙江大学 机械设计研究所,浙江 杭州 310027
Phenomenological dynamic model on two-way shape memory effects of shape memory alloy
Fu-zai LV1(),Yu-tian HU2,Jian-jun WU1,Lin-xiang WANG2,*()
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Institute of Mechanical Design, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1001 KB)   HTML
摘要:

构造可以用于描述一维结构的形状记忆合金(SMA)的双程形状记忆效应的唯象动力学模型. 该模型基于与形状记忆合金中热弹性相变有关的唯象理论,将应力场和热场下的滞回环曲线视为马氏体相变和马氏体变体重构在宏观层面上的表现. 为了模拟温度诱发的相变,构造非凸自由能函数,使得函数的每个局部平衡对应于相变过程中的一个相. 在外部负载(力或者热)的作用下,可以通过模拟系统状态(应变)在不同平衡态之间的转变,研究温度诱发的相变. 相变动力学的控制方程采用拉格朗日方程,以非线性微分方程来表示. 利用非线性常微分方程描述单程形状记忆效应,通过对不同相变过程的加权组合描述双程形状记忆效应. 开展有关力和热负载下的数值实验,模拟热和应力诱发的相变以及热负载下与单程形状记忆效应和双程形状记忆效应有关的滞回环,模拟马氏体重构所导致的单滞回环以及超弹性效应所引起的双滞回环. 从实验结果可以看出,双程形状记忆效应及超弹性效应均可以被提出的模型成功捕捉,验证了该模型的描述能力.

关键词: 滞回曲线动力学马氏体相变双程形状记忆效应微分方程    
Abstract:

A phenomenological dynamic model was constructed for the modeling of two-way shape memory effect in one-dimensional shape memory alloy (SMA) structure. The model was based on the phenomenological theory of thermoelastic phase transformations in SMAs. Hysteresis loops in both mechanical and thermal fields were treated as macroscopic illustrations of martensite transformations and martensite variant re-orientations. A non-convex free energy function was constructed to characterize the phase transformations induced by temperature. Then each of its local equilibriums can be used to represent a phase in the transformations. System states (strain) can be transformed upon external loadings (mechanical or thermal) from one stable equilibrium to another. Then the dynamics of phase transformations can be modeled by simulating the system state transformations. Governing equations for the transformation dynamics were formulated by employing the Lagrange's equation, and were expressed as nonlinear differential equations. One-way shape memory effect was described by a nonlinear ordinary differential equation, and the model for two-way shape memory effect was constructed by taking the weighted combination of different phase transformations. A series of numerical experiments were conducted. Phase transformations induced by both mechanical and thermal loadings were simulated. Hysteresis loops associated with both one-way shape memory effect and two-way shape memory effect under thermal loadings were presented. A single hysteresis loop associatedwith mechanical-induced martensite variant re-orientations and double hysteresis loops associated with the pseudo-elastic effects were presented. The numerical results showed that two-way shape memory effect and pseudo-elastic effect were successfully modeled, which demonstrated the capability of the current model.

Key words: hysteresis curve    dynamics    martensite transformation    two-way shape memory effects    differential equation
收稿日期: 2019-03-03 出版日期: 2020-04-05
CLC:  TH 142  
基金资助: 国家自然科学基金资助项目(51875511)
通讯作者: 王林翔     E-mail: lfzlfz@zju.edu.cn;wanglx236@zju.edu.cn
作者简介: 吕福在(1968—),男,副教授,博士,从事磁致伸缩超声导波无损检测技术研究. orcid.org/0000-0002-6659-5495. E-mail: lfzlfz@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
吕福在
胡宇天
伍建军
王林翔

引用本文:

吕福在,胡宇天,伍建军,王林翔. 双程形状记忆效应的唯象动力学模型[J]. 浙江大学学报(工学版), 2020, 54(4): 642-649.

Fu-zai LV,Yu-tian HU,Jian-jun WU,Lin-xiang WANG. Phenomenological dynamic model on two-way shape memory effects of shape memory alloy. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 642-649.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.04.002        http://www.zjujournals.com/eng/CN/Y2020/V54/I4/642

图 1  马氏体相变与马氏体变体重构引起的形状记忆效应示意图
图 2  马氏体相变及其自由能函数
图 3  不同变体偏向下的马氏体相变
图 4  不同变体倾向的马氏体相变
图 5  外力诱发SMA相变所产生的滞回环曲线
图 6  与SMA双程形状记忆效应有关的热滞回环
1 杨杰, 吴月华. 形状记忆合金及其应用[M]. 合肥: 中国科学技术大学出版社, 1993.
2 李尚荣. NiTi记忆合金动态特性实验研究及其在仿生机器鱼上的应用[D]. 合肥: 中国科学技术大学, 2006.
LI Shang-rong. Experimental study on dynamic characteristics of NiTi memory alloy and its application in biomimetic robot fish [D]. Hefei: Press of University of Science and Technology of China, 2006.
3 BANKS H T, SMITH R C, WANG Y. Smart material structures: modeling, estimation and control [M]. Paris: Wiley, 1996.
4 SMITH R C, SEELECKE S, DAPINO M, et al A unified framework for modeling hysteresis in ferroic materials[J]. Journal of the Mechanics and Physics of Solids, 2006, 54 (1): 46- 85
doi: 10.1016/j.jmps.2005.08.006
5 CHEN Y C, LAGOUDAS D C Impact induced phase transformation in shape memory alloys[J]. Journal of the Mechanics and Physics of Solids, 2000, 48 (2): 275- 300
doi: 10.1016/S0022-5096(99)00044-7
6 MELNIK R V N, ROBERTS A J, THOMAS K A Coupled thermomechanical dynamics of phase transitions in shape memory alloys and related hysteresis phenomena[J]. Mechanics Research Communications, 2001, 28 (6): 637- 651
doi: 10.1016/S0093-6413(02)00216-1
7 TIMOFEEVA E E, LARCHENKOVA N G, PANCHENKO E Y, et al Two-way shape memory effect induced by high-temperature isothermal training in [001]-oriented heterophase single crystals of Ni49Fe18Ga27Co6 alloy[J]. Russian Physics Journal, 2018, 61 (8): 1483- 1490
doi: 10.1007/s11182-018-1560-x
8 KAYA E, KAYA I A review on machining of NiTi shape memory alloys: the process and post process perspective[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100: 2045- 2087
9 NNAMCHI P, YOUNE A, GONZALEZ S A review on shape memory metallic alloys and their critical stress for twinning[J]. Intermetalics, 2019, 105: 61- 78
doi: 10.1016/j.intermet.2018.11.005
10 EMIL B, EILON F, DORON S Analysis of austenite-martensite phase boundary and twinned microstructure in shape memory alloys: the role of twinning disconnections[J]. Acta Materialia, 2019, 164: 520- 529
doi: 10.1016/j.actamat.2018.11.003
11 FALK F Model free energy, mechanics, and thermomechanics of shape memory alloy[J]. Acta Materialia, 1980, 28 (12): 1773- 1780
doi: 10.1016/0001-6160(80)90030-9
12 TANAKA K, KOBAYASHI S, SATO Y Thermomechanic of transformation pseudoelasticity and shape memory effect in alloy[J]. International Journal of Plasticity, 1986, 2 (1): 59- 72
doi: 10.1016/0749-6419(86)90016-1
13 LIANG C, ROGERS C One-dimensional thermo-mechanical constitutive relations for shape memory material[J]. Journal of Intelligent Material Systems and Structures, 1997, 1 (2): 207- 234
14 BRINSON L C, LAMMERING R Finite element analysis of the behavior of shape memory alloy and their application[J]. International Journal of Solids and Structures, 1993, 30 (23): 3261- 3280
15 WAEL Z, ZIAD M A three-dimensional model of the thermomechanical behavior of shape memory alloys[J]. Journal of the Mechanics and Physics of Solids, 2007, 55 (11): 2455- 2490
doi: 10.1016/j.jmps.2007.03.012
16 SEDLAK P, FROST M Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings[J]. International Journal of Plasticity, 2012, 39: 132- 151
doi: 10.1016/j.ijplas.2012.06.008
17 YU Chao, KANG Guo-cheng, KAN Qian-zheng study on the rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy based on a new crystal plasticity constitutive model[J]. International Journal of Solids and Structures, 2014, 51 (25/26): 4386- 4405
doi: 10.1016/j.ijsolstr.2014.09.006
18 YU Chao, KANG Guo-cheng, KAN Qian-zheng Rate dependent cyclic deformation of super-elastic NiTi shape memory alloy: thermo-mechanical coupled and physical mechanism-based constitutive model[J]. International Journal of Plasticity, 2015, 72: 60- 90
doi: 10.1016/j.ijplas.2015.05.011
19 XI Xie, GUO Zheng-kang Phase field modeling for cyclic phase transition of NiTi shape memory alloy single crystal with super-elasticity[J]. Computational Materials Science, 2018, 143: 212- 224
doi: 10.1016/j.commatsci.2017.11.017
20 YAO Xiao, PAN Zeng, LI Ping-lei Micromechanical modeling on thermomechanical coupling of cyclically deformed superelastic NiTi shape memory alloy[J]. International Journal of Plasticity, 2018, 107: 164- 188
doi: 10.1016/j.ijplas.2018.04.003
21 FALK F Driven domain walls in shape memory alloys[J]. Journal of Physics C: Solid State Physics, 1987, 20 (17): 2501
doi: 10.1088/0022-3719/20/17/005
22 WANG Lin-xiang, MELNIK R V N Thermo-mechanical wave propagation in shape memory alloy rod with phase transformations[J]. Journal of Mechanics of Advanced Materials and Structures, 2007, 14 (8): 665- 676
doi: 10.1080/15376490701673227
23 WANG Lin-xiang, MELNIK R V N Numerical model for vibration damping resulting from the first order phase transformations[J]. Applied Mathematical Modeling, 2007, 31 (9): 2008- 2018
doi: 10.1016/j.apm.2006.08.019
24 NIEZGODKA M, SPREKELS J Convergent numerical approximations of the thermomechanical phase transitions in shape memory alloys[J]. Numerische Mathematik, 1991, 58: 759- 778
25 BUBNER N, MACKIN G, ROGERS R C Rate dependence of hysteresis in one-dimensional phase transitions[J]. Computational Materials Science, 2000, 18 (3/4): 245- 254
doi: 10.1016/S0927-0256(00)00103-8
26 YAZDANDOOST F, MIRZAEIFAR R Stress wave and phase transformation propagation at the atomistic scale in NiTi shape memory alloys subjected to shock loadings[J]. Shape Memory and Superelasticity, 2018, 4 (4): 435- 449
doi: 10.1007/s40830-018-0189-5
[1] 张铁,胡亮亮,邹焱飚. 基于混合遗传算法的机器人改进摩擦模型辨识[J]. 浙江大学学报(工学版), 2021, 55(5): 801-809.
[2] 刘桓龙,谢迟新,李大法,王家为. 齿轮箱飞溅润滑流场分布和搅油力矩损失[J]. 浙江大学学报(工学版), 2021, 55(5): 875-886.
[3] 詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.
[4] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.
[5] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[6] 李伟达,李娟,李想,张虹淼,顾洪,史逸鹏,张浩杰,孙立宁. 欠驱动异构式下肢康复机器人动力学分析及参数优化[J]. 浙江大学学报(工学版), 2021, 55(2): 222-228.
[7] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[8] 朱凯,王云鹤,秦雪薇,黄亚东,王强,吴珂. 升温速率对沥青燃烧和气态产物释放特性的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1805-1811.
[9] 王泽胜,李研彪,罗怡沁,孙鹏,陈波,郑航. 七自由度冗余混联机械臂的动力学分析[J]. 浙江大学学报(工学版), 2020, 54(8): 1505-1515.
[10] 胡凯明,李华. 轴向受压梁非线性随机最优电压有界控制[J]. 浙江大学学报(工学版), 2020, 54(5): 940-946.
[11] 凌道盛,江琪熙,赵宇. 考虑基层裹挟的碎屑流铲刮效应数值模拟[J]. 浙江大学学报(工学版), 2020, 54(11): 2067-2075.
[12] 王一博,丁会明,郑津洋,陆群杰,王振宇,徐平,陈志伟. 预应变亚稳态奥氏体不锈钢(S30408)深冷低周疲劳性能[J]. 浙江大学学报(工学版), 2020, 54(11): 2190-2195.
[13] 陈英龙,闫迪,张增猛,宁大勇,弓永军. 基于水压直驱的软体单元的动静态特性[J]. 浙江大学学报(工学版), 2019, 53(8): 1602-1609.
[14] 李晓洁,岑建孟,夏芝香,方梦祥,王涛,王勤辉,骆仲泱. 松木屑与煤加压热解特性[J]. 浙江大学学报(工学版), 2019, 53(7): 1298-1305.
[15] 吕良,陈虹,宫洵,赵海光,胡云峰. 汽油发动机冷却系统建模与水温控制[J]. 浙江大学学报(工学版), 2019, 53(6): 1119-1129.