Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 940-946    DOI: 10.3785/j.issn.1008-973X.2020.05.011
机械工程     
轴向受压梁非线性随机最优电压有界控制
胡凯明1,2(),李华2,*()
1. 中国计量大学 机电工程学院,浙江 杭州 310018
2. 浙江大学 航空航天学院,浙江 杭州 310027
Nonlinear stochastic optimal voltage bounded control for axial compressed beam
Kai-ming HU1,2(),Hua LI2,*()
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
2. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(948 KB)   HTML
摘要:

针对轴向受压细长结构容易在外界扰动下产生低频大幅振动的问题,基于几何非线性理论、压电耦合场理论和拉格朗日方程,推导表面贴附压电作动片的轴向受压梁的机电能量表达式,建立轴向受压梁的非线性随机振动压电主动控制模型;考虑压电作动器工作电压的限制因素,利用随机平均法和动态规划方程导出改进型的非线性随机最优电压有界控制策略. 该策略包括无界最优电压和bang-bang控制电压,因而较bang-bang电压控制律具有更好的连续性. 对简支轴向受压梁在多种情况下的非线性随机振动最优控制进行数值仿真,与bang-bang电压控制律进行比较,结果表明本研究导出的改进型电压控制律所需的压电作动器控制电压大幅下降,而振动控制效果略有降低.

关键词: 压电结构轴向受压梁非线性随机动力学最优控制电压有界    
Abstract:

The electromechanical energy expressions of axial compressed beam with surface attached piezoelectric actuators were derived, and then a nonlinear stochastic vibration active control model of axial compressed beam was developed, based on the geometric nonlinear theory, multi-physics coupling theory of piezoelectric materials and Lagrange's equation. The purpose is to deal with the low-frequency nonlinear stochastic vibration of the axial compressed slim structures which is easily led by the external disturbance. A modified nonlinear stochastic optimal voltage bounded control strategy was derived by the stochastic average method and dynamical programming equation, in consideration of the voltage limitation of piezoelectric actuators. This voltage control strategy consists of unbounded optimal voltage control and bang-bang voltage control, so that has a better continuity than bang-bang voltage control strategy. The derived optimal voltage bounded control strategy were applied to control the nonlinear stochastic vibration of an axial compressed simply supported beam. Numerical results of various parameters cases show that the required control voltage of piezoelectric actuators is lower than that of bang-bang voltage control, with slight loss of vibration control effectiveness.

Key words: piezoelectric structure    axial compressed beam    nonlinear stochastic dynamics    optimal control    bounded voltage
收稿日期: 2019-05-01 出版日期: 2020-05-05
CLC:  O 324  
基金资助: 国家自然科学基金重点资助项目(11432012)
通讯作者: 李华     E-mail: kaiminghu@cjlu.edu.cn;lhlihua@zju.edu.cn
作者简介: 胡凯明(1985—),男,讲师,博士,从事智能材料结构及振动控制研究. orcid.org/0000-0003-0043-8291. E-mail: kaiminghu@cjlu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡凯明
李华

引用本文:

胡凯明,李华. 轴向受压梁非线性随机最优电压有界控制[J]. 浙江大学学报(工学版), 2020, 54(5): 940-946.

Kai-ming HU,Hua LI. Nonlinear stochastic optimal voltage bounded control for axial compressed beam. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 940-946.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.05.011        http://www.zjujournals.com/eng/CN/Y2020/V54/I5/940

图 1  表面贴附压电作动片的轴向受压梁
参数部件 L/m b/m h/mm ρ/(g?cm?3) E/GPa d31/(pC?N?1)
1.00 0.01 4.0 2.7 70 ?
压电作动器 0.02 0.01 0.5 7.8 61 ?300
表 1  梁及压电作动器的模型参数
图 2  轴向受压梁的非线性幅频响应
图 3  2种电压控制律下的受压简支梁位移响应与控制电压样本
图 4  2种电压控制律下的控制效果和电压控制效率随激励强度的变化
图 5  2种电压控制律下控制效果和电压控制效率随电压限幅的变化
1 EMAM S A, NAYFEH A H Postbuckling and free vibrations of composite beams[J]. Composite Structures, 2009, 88 (4): 636- 642
doi: 10.1016/j.compstruct.2008.06.006
2 关富玲, 戴璐 双环可展桁架结构动力学分析与试验研究[J]. 浙江大学学报:工学版, 2012, 46 (9): 1605- 1610
GUAN Fu-ling, DAI Lu Dynamic analysis and test research of double-ring deployable truss structure[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (9): 1605- 1610
3 赵伟东, 黄永玉, 杨亚平 弹性基础上压杆的横向非线性自由振动与屈曲[J]. 力学与实践, 2014, 36 (3): 303- 307
ZHAO Wei-dong, HUANG Yong-yu, YANG Ya-ping The transverse nonlinear free vibration and the buckling of compressive bar on an elastic foundation[J]. Mechanics in Engineering, 2014, 36 (3): 303- 307
doi: 10.6052/1000-0879-13-409
4 邓婷, 姜旭曈, 丁敏, 等 温室风振分析中的压杆弯曲振动动态刚度阵模型[J]. 中国农业大学学报, 2018, 23 (1): 120- 125
DENG Ting, JIANG Xu-tong, DING Min, et al Dynamic stiffness matrix models for the flexural vibration of compression bar in greenhouse wind vibration analysis[J]. Journal of China Agricultural University, 2018, 23 (1): 120- 125
5 GIANNOPOULOS G, GROEN M, VOS R, et al Dynamic performance of post-buckled precompressed piezoelectric actuator elements[J]. International Journal of Structural Stability and Dynamics, 2012, 12 (5): 1250042
doi: 10.1142/S0219455412500423
6 VOS R, BARRETT R Dynamic elastic-axis shifting: an important enhancement of piezoelectric postbuckled precompressed actuators[J]. AIAA Journal, 2010, 48 (3): 583- 590
doi: 10.2514/1.38339
7 MASANA R, DAQAQ M F Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters[J]. Journal of Vibration and Acoustics, 2011, 133 (1): 011007
doi: 10.1115/1.4002786
8 CAI T, MUKHERJEE R, DIAZ A R Vibration suppression in a simple tension-aligned array structure[J]. AIAA Journal, 2014, 52 (3): 504- 516
doi: 10.2514/1.J052127
9 FRIDMAN Y, ABRAMOVICH H Enhanced structural behavior of flexible laminated composite beams[J]. Composite Structures, 2008, 82 (1): 140- 154
doi: 10.1016/j.compstruct.2007.05.007
10 SRIDHARAN S, KIM S Piezoelectric control of columns prone to instabilities and nonlinear modal interaction[J]. Smart Materials and Structures, 2008, 17 (3): 035001
doi: 10.1088/0964-1726/17/3/035001
11 ZHANG Y H Nonlinear vibration control of a piezoelectric beam with a fuzzy logic controller[J]. International Journal of Applied Electromagnetics and Mechanics, 2015, 52 (1/2): 1- 10
12 LI L, SONG G, OU J Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control[J]. Journal of Vibration and Control, 2010, 16 (10): 1503- 1526
doi: 10.1177/1077546309103284
13 ZHU W Q, HUANG Z L, YANG Y Q Stochastic averaging of quasi-integrable Hamiltonian systems[J]. Journal of Applied Mechanics, 1997, 64 (4): 975- 984
doi: 10.1115/1.2789009
14 ZHU W Q, YING Z G, SOONG T T An optimal nonlinear feedback control strategy for randomly excited structural systems[J]. Nonlinear Dynamics, 2001, 24 (1): 31- 51
doi: 10.1023/A:1026527404183
15 朱位秋.非线性随机动力学与控制—Hamilton理论体系框架[M]. 北京: 科学出版社, 2003.
16 ZHAI J J, ZHAO G Z, SHANG L Y Integrated design optimization of structure and vibration control with piezoelectric curved shell actuators[J]. Journal of Intelligent Material Systems and Structures, 2016, 27 (19): 2672- 2691
doi: 10.1177/1045389X16641203
17 ZHANG Y, NIU H, XIE S, et al Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator[J]. Smart Materials and Structures, 2008, 17 (3): 035024
doi: 10.1088/0964-1726/17/3/035024
18 LI H, LI H Y, CHEN Z B, et al Experiments on active precision isolation with a smart conical adapter[J]. Journal of Sound and Vibration, 2016, 374: 17- 28
doi: 10.1016/j.jsv.2016.03.039
19 HU K M, LI H Multi-parameter optimization of piezoelectric actuators for multi-mode active vibration control of cylindrical shells[J]. Journal of Sound and Vibration, 2018, 426: 166- 185
doi: 10.1016/j.jsv.2018.04.021
20 TZOU H S. Piezoelectric shells: distributed sensing and control of continua [M]. Boston/Dordrecht: Kluwer Academic Publishers, 1993.
21 YING Z G, ZHU W Q Optimal bounded control for nonlinear stochastic smart structure systems based on extended Kalman filter[J]. Nonlinear Dynamics, 2017, 22 (2): 233- 241
22 YING Z G, ZHU W Q A stochastically averaged optimal control strategy for quasi-Hamiltonian systems with actuator saturation[J]. Automatica, 2006, 42 (9): 1577- 1583
doi: 10.1016/j.automatica.2006.04.023
23 HUAN R H, ZHU W Q Stochastic optimal control of quasi integrable Hamiltonian systems subject to actuator saturation[J]. Journal of Vibration and Control, 2009, 15 (1): 85- 99
doi: 10.1177/1077546307086893
[1] 刘洁,董献洲,韩维,王昕炜,刘纯,贾珺. 采用牛顿迭代保辛伪谱算法的舰载机甲板路径规划[J]. 浙江大学学报(工学版), 2020, 54(9): 1827-1838.
[2] 肖扬,管成,王飞. 扭矩耦合式油液混合动力挖掘机能量管理[J]. 浙江大学学报(工学版), 2016, 50(1): 70-77.
[3] 刘兴高, 陈珑. 约束优先边值固定最优控制嵌套优化方法[J]. J4, 2010, 44(7): 1247-1250.
[4] 许贤, 罗尧治, 沈雁彬. 张拉整体结构的非线性主动控制[J]. J4, 2010, 44(10): 1979-1984.
[5] 茅僰 应祖光 朱位秋. 不确定结构非线性随机最优控制的鲁棒性[J]. J4, 2008, 42(7): 1101-1105.
[6] 祝长生 陈拥军. 部分状态可测转子系统振动控制的随机最优策略[J]. J4, 2007, 41(6): 980-984.
[7] 陈拥军 祝长生. 随机最优策略在转子系统振动控制中的应用[J]. J4, 2006, 40(6): 1015-1018.
[8] 陈哲明 潘再平. 基于迭代学习的开关磁阻电动机最优控制研究[J]. J4, 2006, 40(1): 25-28.
[9] 胡旭晓 赵亮. 基于变形体的热驱动部件多模态控制策略研究[J]. J4, 2005, 39(5): 632-636.