Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 775-792    DOI: 10.3785/j.issn.1008-973X.2021.04.021
机械与能源工程     
小型制冷系统两相流致噪声研究进展
张玙(),刘益才*()
中南大学 能源科学与工程学院,湖南 长沙 410083
Progress in two-phase flow-induced noise of small scale refrigeration system
Yu ZHANG(),Yi-cai LIU*()
School of Energy Science and Engineering, Central South University, Changsha 410083, China
 全文: PDF(5371 KB)   HTML
摘要:

系统地回顾了制冷剂两相流致噪声研究的主要进展. 两相流理论研究表明,流致噪声的根本原因是压力降随时间的变化,流型对压力降的变化有显著影响,压力降的波动会引起管道的振动和噪声. 空泡动力学理论指出流型会影响气泡尺寸和形状,表现出声学特性的变化. 从热力学效应、管系和节流元件结构等方面出发,阐述各因素对流致噪声的影响,综合比较两相流致噪声抑制手段的效果. 从实验和数值模拟2个方面,概述了两相流致噪声研究方法的发展. 展望了两相流致噪声研究的发展方向,可以通过评价噪声特性的关键指标参数,系统地考察特征参数对流致噪声的影响,提出噪声抑制措施,未来指导制冷系统的优化设计.

关键词: 两相流流型图节流流致噪声空泡动力学    
Abstract:

Progress in flow-induced noise of refrigerant was systematically reviewed. The analysis of two-phase flow theory shows that time gradient of the pressure drop is the root cause of flow-induced noise. Flow pattern significantly influences on the pressure drop, and the fluctuation of pressure drop causes vibration and noise along the pipeline. The cavitation dynamics shows that bubble size and shape change are influenced by the flow pattern, and the change of acoustic characteristics is represented. The influence of various factors on flow-induced noise was described from the aspects of thermodynamics and the structure of pipeline and throttling element. Effective methods for suppressing two-phase flow-induced noise were comprehensively compared. Researching methods of two-phase flow-induced noise were summarized from experimental and numerical simulation. Future interest will be focused on the quantitative research of flow-induced noise, and correlations will be proposed based on the characteristic parameters for the noise. Noise suppression methods will be proposed for the guideline of optimal design for refrigeration system.

Key words: two-phase flow    flow pattern map    throttling    flow-induced noise    cavitation dynamics
收稿日期: 2020-07-11 出版日期: 2021-05-07
CLC:  TB 651  
基金资助: 国家自然科学基金资助项目(51776226)
通讯作者: 刘益才     E-mail: zhangyu19@csu.edu.cn;lyccsu@csu.edu.cn
作者简介: 张玙(1986—),女,博士生,从事制冷系统噪声抑制的研究. orcid.org/0000-0002-4817-4945. E-mail: zhangyu19@csu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张玙
刘益才

引用本文:

张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.

Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.021        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/775

图 1  水平管及垂直上升管内两相流流型示意图[7]
图 2  两相流分相流模型图
图 3  分相流模型动量方程的控制体积
图 4  噪声模式图与流型图预估噪声的对比[12]
图 5  采用多孔金属降低膨胀阀噪声[14]
图 6  水平管道布局的电子膨胀阀附近的流型图(上)和流动图像(下)中的流型变化和噪声声压级[15]
图 7  流动控制器对噪声声压级影响的对比[16]
文献 制冷剂 主要结论
文献[9] R22 ●建立制冷剂流型与噪声间的关系
●膨胀阀进口处制冷剂为单相时,能够有效地降低噪声
文献[11] 空气-水 ●弹状流产生的噪声较大
●噪声声压级取决于毛细管末端气体膨胀引起的压力脉动大小
文献[67] R600A ●环状流或波状流产生的噪声声压级较小
●弹状流和乳沫状流产生的噪声声压级较大
●乳沫状流产生的噪声是最嘈杂的
文献[12] R600A ●环形流的噪声声压级并非总比其他流型的小
●提出无量纲参数RINL用于评价噪声
●建立评价冰箱制冷剂流致噪声模式图
文献[14] R410A ●上游多孔金属可以将塞状流转为泡状流;
●下游多孔金属可以降低制冷剂流速
文献[15, 16] R410A ●弹状流、乳沫状流的噪声声压级明显较大
●流型对噪声的影响远超过管排布方式
●采用蜂巢或多孔金属结构的流动调节器能够有效地抑制流致噪声
文献[17] R600A ●间歇流:流体诱发的压力脉冲导致非稳态噪声激励
●非间歇流:均匀的噪声激励与两相流的气相速度密切相关,给出经验关联式
表 1  基于两相流理论研究制冷剂两相流致噪声的文献综述
图 8  噪声声压与两相流气相动压间的关系[17]
图 9  圆柱形气泡示意图(泰勒气泡)
图 10  噪声声压级随流量和气泡尺寸变化的研究[23]
文献 研究对象 制冷剂 主要结论
文献[21] 蒸发器出口段 R600A ●瞬态过程中制冷剂的迁移对蒸发器出口段瞬态噪声影响较大
●稳态噪声频率与式(11)计算结果相吻合
文献[22] 蒸发器入口段 R600A ●首次提出泰勒气泡的固有频率公式
●实验发现了2种气泡噪声:一是较大气泡通过孔板时破裂而产生,二是长圆柱形气泡沿轴向振荡时产生
文献[23] 电子膨胀阀 空气-水 ●单个气泡的前端和末端通过小孔时,均会出现噪声增大现象
●静压脉动值和噪声声压级受制冷剂质量流量的影响较大,受气泡长度的影响较小
文献[24] 毛细管 R600A ●毛细管出口制冷剂流动状态的改变是噪声激励的主要原因
●毛细管出口的塞状流观察到了典型的泰勒气泡,测得的频率与式(15)的计算结果相吻合
表 2  基于空泡动力学理论的制冷剂两相流致噪声文献综述
图 11  制冷循环压焓图
图 12  循环特性对于噪声的影响[30]
图 13  噪声声压级随制冷剂干度和气相速度的变化[17]
图 14  质量流量和噪声声压级随蒸发温度的变化[17]
图 15  压缩比对空调室内机噪声的影响[31]
图 16  制冷剂流入方式对于流致噪声声压级的影响[9]
图 17  冰箱蒸发器进口管优化设计及整体噪声的测试结果[7]
图 18  管道排布对噪声的影响[12]
图 19  采用直管过渡结构的制冷系统[35]
文献 制冷剂 主要结论
文献[9] R22 ●制冷剂垂直上升流入膨胀阀将出现弹状流
●水平流入方式能够有效降低低频噪声声压级
文献[7] R600A ●蒸发器入口垂直管道中的流型更可能是乳沫状流
●蒸发器进口管为水平布置时,制冷剂流致噪声声压级远小于竖直布置时的噪声声压级
文献[15] R410A ●膨胀阀前垂直布管引起的噪声声压级小于水平布管(与冰箱空调系统的结论相反)
文献[34] R600A ●制冷剂在毛细管进口处的理想全液相状态很难实现
文献[35] R600A ●采用直管过渡结构连接毛细管和蒸发器,能够明显抑制毛细管射流噪声
文献 [36] R134A ●增加管道壁厚能够有效地减小高频噪声沿着管道结构的传播
表 3  管系结构对制冷剂两相流致噪声影响的文献综述
图 20  节流短管内的流致噪声[37]
图 21  电子膨胀阀结构参数对于制冷剂流致噪声的影响[25]
噪声抑制方法 文献 具体措施 Lp / dB 制冷剂
改变管路或节流件的结构 文献[9] 电子膨胀阀入口管水平布置 5 R22
文献[6] 减小蒸发器入口管直径 2~10 R22
文献[25] 改变电子膨胀阀喷孔长度 6 R410A
文献[25] 改变电子膨胀阀喷孔进口扩口角度 3 R410A
文献[25] 改变电子膨胀阀喷孔出口扩口角度 1 R410A
文献[1] 改进毛细管过渡管结构 3 R600A
文献[14] 在电子膨胀阀的上、下游安装多孔金属 13 R410A
采用流动调节器 文献[16] 采用蜂巢结构的流动控制器 10~20 R410A
文献[16] 采用多孔金属结构的流动控制器 5~15 R410A
表 4  近年来小型制冷系统两相流致噪声抑制效果的总结
图 22  压力传感器、加速度计以及声级计等测量信号的对比[36]
图 23  流致噪声数值计算方法[42]
图 24  调节阀开度对空化噪声的影响[46]
图 25  电子膨胀阀不同开度时湍流动能与噪声声压级云图分布[25]
1 刘永辉, 刘益才, 尹凤福, 等 基于内部流动抑制的小型家用制冷设备降噪技术研究[J]. 振动与冲击, 2017, 36 (15): 152- 157
LIU Yong-hui, LIU Yi-cai, YIN Feng-fu, et al Noise reduction technique for small type household refrigerators based on refrigerant flow suppression[J]. Journal of Vibration and Shock, 2017, 36 (15): 152- 157
2 仇颖, 李红旗 全封闭制冷压缩机噪声研究的现状与特点[J]. 家电科技, 2005, (12): 48- 50
QIU Ying, LI Hong-qi Present situation of noise reduction research of hermetic compressor[J]. Household Appliance Technology, 2005, (12): 48- 50
doi: 10.3969/j.issn.1672-0172.2005.12.021
3 PARK J I, BILAL N, ADAMS D E Gas pulsation reductions in a multi cylinder compressor suction manifold using valve-to-valve mass flow rate phase shifts[J]. Journal of Vibration and Acoustics, 2007, 129 (4): 406- 416
doi: 10.1115/1.2748457
4 OH H E, PARK D J, JEONG W B Numerical and experimental study on the reduction of refrigerant pressure pulsation within compressor pipes[J]. Journal of Sound and Vibration, 2019, 438: 506- 519
doi: 10.1016/j.jsv.2018.09.040
5 徐济鋆, 贾斗南. 沸腾传热与气液两相流[M]. 2版. 北京: 原子能出版社, 2001: 46-72.
6 HAN H S, JEONG W B, KIM M S, et al Analysis of the root causes of refrigerant-induced noise in refrigerators[J]. Journal of Mechanical Science and Technology, 2009, 23 (12): 3245- 3256
doi: 10.1007/s12206-009-0918-y
7 HAN H S, JEONG W B, KIM M S, et al Reduction of the refrigerant-induced noise from the evaporator-inlet pipe in a refrigerator[J]. International Journal of Refrigeration, 2010, 33 (7): 1478- 1488
doi: 10.1016/j.ijrefrig.2010.05.014
8 阎昌琪. 气液两相流[M]. 3版. 哈尔滨: 哈尔滨工程大学出版社, 2017: 38-64.
9 UMEDA T, NAKAMURA S, OGUNI K, et al Reduction of noise caused by gas-liquid two-phase refrigerant flow through an expansion valve (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1993, 59 (557): 243- 248
doi: 10.1299/kikaib.59.243
10 UMEDA T, NAKAMURA H, OOTSUKA A, et al Reduction of refrigerant flow noise in residential air conditioners during energy-saving cycle-heating dehumidification operation (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 2000, 66 (641): 141- 149
doi: 10.1299/kikaib.66.141
11 TATSUMI K Study on noise caused by slug flow through a capillary tube (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1997, 64 (611): 2392- 2397
12 KIM M S, JEONG W B, HAN H S Development of noise pattern map for predicting refrigerant-induced noise in refrigerators[J]. Journal of Mechanical Science and Technology, 2014, 28 (9): 3499- 3510
doi: 10.1007/s12206-014-0810-2
13 TAITEL Y, DUKLER A E A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. American Institute of Chemical Engineers Journal, 1976, 22 (2): 47- 55
14 SATOSHI H, MASAHIRO N, HIROAKI M, et al. Noise reduction technology with porous metal for refrigerant two-phase flow through the expansion valve [C]// 10th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2004: 713-720.
15 KIM G J, LEE J H, PARK J H, et al Flow visualization and noise measurement of R410A two-phase flow near electric expansion valve for heating cycle of multi-split air-source heat pump[J]. Applied Thermal Engineering, 2019, 157: 113712
doi: 10.1016/j.applthermaleng.2019.113712
16 KIM G J, SONG S Noise reduction of refrigerant two-phase flow using flow conditioners near the electric expansion valve[J]. Journal of Mechanical Science and Technology, 2020, 34 (2): 719- 725
doi: 10.1007/s12206-020-0118-3
17 RUEBELING J, GROHMANN S Flow-induced noise generation at the outlet of a capillary tube[J]. International Journal of Refrigeration, 2020, 111: 188- 196
doi: 10.1016/j.ijrefrig.2019.11.021
18 吴业正, 朱瑞琪, 曹小林, 等 毛细管内制冷剂的综合成核理论与模型[J]. 西安交通大学学报, 2002, 36 (7): 661- 664
WU Ye-zheng, ZHU Rui-qi, CAO Xiao-lin, et al Combined nucleation theory and models for refrigerant flow in a capillary tube[J]. Journal of Xi’an Jiaotong University, 2002, 36 (7): 661- 664
doi: 10.3321/j.issn:0253-987X.2002.07.001
19 MINNAERT M On musical air bubbles and the sound of running water[J]. Philosophical Magazine Series 7, 1933, 16 (104): 235- 248
doi: 10.1080/14786443309462277
20 STRASBERG M Gas bubbles as source of sound in liquids[J]. Journal of the Acoustical Society of America, 1956, 28 (1): 20- 27
doi: 10.1121/1.1908212
21 CELIK S, NSOFOR E C Studies on the flow-induced noise at the evaporator of a refrigerating system[J]. Applied Thermal Engineering, 2011, 31 (14/15): 2485- 2493
22 HAN H S, JEONG W B, KIM M S, et al Frequency characteristics of the noise of R600a refrigerant flowing in a pipe with intermittent flow pattern[J]. International Journal of Refrigeration, 2011, 34 (6): 1497- 1506
doi: 10.1016/j.ijrefrig.2011.04.004
23 UMEDA T, FUKUSHIMA T, NAKAMURA S, et al Noise caused by gas-liquid two-phase flow with single large gas bubble through an orifice (in Japanese)[J]. Transactions of the Japan Society of Mechanical Engineers: Series B, 1994, 60 (574): 1928- 1935
doi: 10.1299/kikaib.60.1928
24 TANNERT T, HESSE U. Noise effects in capillary tubes caused by refrigerant flow [C]// 16th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2016: 1562-1572.
25 黄皓. 电子膨胀阀节流噪声数值模拟[D]. 杭州: 浙江理工大学, 2015.
HUANG Hao. Numerical simulation of throttling noise of electronic expansion valve [D]. Hangzhou: Zhejiang Sci-Tech University, 2015.
26 HIRAKUNI S Noise reduction technology caused by refrigerant two-phase flow for room air-conditioner[J]. Japanese Journal of Multiphase Flow, 2004, 18 (1): 23- 30
27 SINGH G M, RODARTE E, MILLER N R, et al. Noise generation from expansion devices in refrigerant: ACRC TR-152 [R]. Urbana, Illinois: University of Illinois, 1999.
28 SINGH G M, RODARTE E, MILLER N R, et al. Prediction of noise generated by expansion devices throttling refrigerant: ACRC TR-163 [R]. Urbana, Illinois: University of Illinois, 2000.
29 SINGH G M, RODARTE E, MILLER N R, et al. Modification of a standard aeroacoustic valve noise model to account for friction and two-phase flow: ACRC TR-162 [R]. Urbana, Illinois: University of Illinois, 2000.
30 JEONG W B, HAN H S, MO J Y, et al Experimental study of the effects of the cycle characteristics on the refrigerant-induced noise in system air-conditioner[J]. Journal of Mechanical Science and Technology, 2007, 21 (7): 1112- 1119
doi: 10.1007/BF03027661
31 陈绍林, 吴俊鸿, 段亮 空调系统制冷剂压力脉动产生的噪声分析及对策[J]. 制冷与空调, 2011, 11 (2): 49- 52
CHEN Shao-lin, WU Jun-hong, DUAN Liang Noise analysis and solutions for air-conditioning system due to refrigerant pressure fluctuation[J]. Refrigeration and Air-conditioning, 2011, 11 (2): 49- 52
doi: 10.3969/j.issn.1009-8402.2011.02.012
32 HEWITT G F, ROBERTS D N. Studies of two-phase flow patterns by simultaneous X-ray and flash photography: AERE-M2159 [R]. Harwell, Berkshire: Atomic Energy Research Establishment, 1969.
33 OSHINOWO T, CHARLES M E Vertical two-phase flow; Part1: flow pattern correlations[J]. Canadian Journal of Chemical Engineering, 1974, 52 (1): 25- 35
34 HARTMANN D, MELO C. An experimental study on the capillary tube flow and its effect on the acoustic behavior of household refrigerators [C]// 15th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2014: 1367-1378.
35 XIA Yu-bo, LIU Yong-hui, LIU Yi-cai, et al Experimental study on reducing the noise of horizontal household freezers[J]. Applied Thermal Engineering, 2014, 68 (1/2): 107- 114
36 ZHANG Y Y, ELBEL S. Experimental analysis to mitigate flow induced noise in expansion devices [C]// 17th International Refrigeration and Air Conditioning Conference. Purdue: IRAC, 2018: 1862-1872.
37 FUCHS H V Generation and control of noise in water supply installation. Part 2: sound source mechanisms[J]. Applied Acoustics, 1993, 38: 59- 85
doi: 10.1016/0003-682X(93)90041-4
38 杨智辉. 冰箱制冷系统流动噪声的研究及抑制[D]. 长沙: 中南大学, 2007.
YANG Zhi-hui. Research on the noise of flowing and its suppression in the refrigerating system of the refrigerator [D]. Changsha: Central South University, 2007.
39 MILKIE J A, GARIMELLA S, MACDONALD M P Flow regimes and void fractions during condensation of hydrocarbons in horizontal smooth tubes[J]. International Journal of Heat and Mass Transfer, 2016, 92: 252- 267
doi: 10.1016/j.ijheatmasstransfer.2015.08.017
40 FANG Li-de, LIANG Yu-jiao, LU Qing-hua, et al Flow noise characterization of gas-liquid two-phase flow based on acoustic emission[J]. Measurement, 2013, 46 (10): 3887- 3897
doi: 10.1016/j.measurement.2013.07.032
41 FANG Li-de, ZENG Qiao-qiao, FARAJ Y, et al Analysis of chaos characteristics of gas liquid two-phase flow noise[J]. Flow Measurement and Instrumentation, 2019, 65: 98- 109
doi: 10.1016/j.flowmeasinst.2018.11.008
42 郭荣. 射流离心泵非定常流动与声学响应特性研究[D]. 兰州: 兰州理工大学, 2019.
GUO Rong. Research on unsteady flow and its acoustic response characteristics in jet centrifugal pump [D]. Lanzhou: Lanzhou University of Technology, 2019.
43 王春旭, 吴崇建, 陈乐佳, 等 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11 (1): 57- 71
WANG Chun-xu, WU Chong-jian, CHEN Le-jia, et al A comprehensive review on the mechanism of flow-induced noise and related prediction methods[J]. Chinese Journal of Ship Research, 2016, 11 (1): 57- 71
doi: 10.3969/j.issn.1673-3185.2016.01.008
44 ZHANG Nan, XIE Hua, WANG Xing, et al Computation of vortical flow and flow induced noise by large eddy simulation with FW-H acoustic analogy and Powell vortex sound theory[J]. Journal of Hydrodynamics, 2016, 28 (2): 255- 266
doi: 10.1016/S1001-6058(16)60627-3
45 王春旭. 水下湍射流及壁面湍流噪声预报方法[D]. 武汉: 华中科技大学, 2009.
WANG Chun-xu. Research on noise prediction of submerged jets and turbulent boundary layer [D]. Wuhan: Huazhong University of Science and Technology, 2009.
46 王世鹏. 调节阀空化与噪声数值模拟研究[D]. 兰州: 兰州理工大学, 2018.
WANG Shi-peng. Numerical simulation of control valve cavitation and noise [D]. Lanzhou: Lanzhou University of Technology, 2018.
47 张坻, 李孔清, 王嘉, 等 气液两相流噪声数值模拟[J]. 矿业工程研究, 2017, 32 (1): 71- 78
ZHANG Chi, LI Kong-qing, WANG Jia, et al Numerical simulation of gas-liquid two-phase flow noise[J]. Mineral Engineering Research, 2017, 32 (1): 71- 78
48 陆亮. 液压节流阀中的空化流动与噪声[D]. 杭州: 浙江大学, 2012.
LU Liang. Cavitating flow and noise in hydraulic throttling valves [D]. Hangzhou: Zhejiang University, 2012.
49 朱明明, 黄彪, 王国玉, 等 非定常空化流致噪声的数值模拟[J]. 排灌机械工程学报, 2017, 35 (11): 933- 940
ZHU Ming-ming, HUANG Biao, WANG Guo-yu, et al Numerical investigation on noise induced by unsteady cavitating flow over hydrofoil[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35 (11): 933- 940
50 LIU Ji-ming, ZHANG Tao, ZHANG Yong-ou Numerical study on flow-induced noise for a steam stop-valve using large eddy simulation[J]. Journal of Marine Science and Application, 2013, 12 (3): 351- 360
doi: 10.1007/s11804-013-1195-9
51 韩铁礼, 潘德阔, 贾尚帅, 等 动车组司机室空调蒸发器气动噪声数值仿真[J]. 计算机辅助工程, 2019, 28 (4): 15- 20
HAN Tie-li, PAN De-kuo, JIA Shang-shuai, et al Numerical simulation on aerodynamic noise of air conditioning evaporator of EMU cab[J]. Computer Aided Engineering, 2019, 28 (4): 15- 20
52 林竹, 吴空 变频电子膨胀阀空调冷媒流动异音分析研究[J]. 家电科技, 2012, (11): 78- 79
LIN Zhu, WU Kong Research of abnormal refrigerant flow sound through EEV in inverter air-conditioner[J]. Journal of Appliance Science and Technology, 2012, (11): 78- 79
doi: 10.3969/j.issn.1672-0172.2012.11.032
53 孙敬龙, 丁龙辉, 张海鹏, 等 家用冰箱制冷剂流动噪音机理与控制研究[J]. 制冷技术, 2019, 39 (4): 63- 67
SUN Jing-long, DING Long-hui, ZHANG Hai-peng, et al Study on mechanism and control of noise of refrigerant flow in household refrigerator[J]. Chinese Journal of Refrigeration Technology, 2019, 39 (4): 63- 67
doi: 10.3969/j.issn.2095-4468.2019.04.205
[1] 张井志,陈武铠,周乃香,雷丽,梁福顺. T型微通道内液滴形成过程及长度的实验研究[J]. 浙江大学学报(工学版), 2020, 54(5): 1007-1013.
[2] 黄钰期,陈卓烈,胡军强,李梅,牛昊一. 活塞内冷油腔两相流振荡可视化模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 435-441.
[3] 张雨,张开林,姚远. 旋转与热效应对齿轮箱轴向迷宫密封泄漏特性的影响[J]. 浙江大学学报(工学版), 2019, 53(9): 1656-1662.
[4] 胡展豪,冯俊涛,盛德仁,陈坚红,李蔚. 湿蒸汽流场下介入式探针振动数值模拟[J]. 浙江大学学报(工学版), 2019, 53(6): 1157-1163.
[5] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[6] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[7] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[8] 董康, 周昊, 杨玉, 王凌力, 岑可法. 二次风风量对旋流燃烧器气固流动特性的影响[J]. 浙江大学学报(工学版), 2014, 48(12): 2162-2171.
[9] 沈跃良,周昊 ,胡敏 ,杨玉 ,吴剑波 ,岑可法. 静电网格系统在旋流燃烧器流场测量中的应用[J]. J4, 2013, 47(9): 1658-1665.
[10] 钱鹏飞, 陶国良, 刘昊, 路波, 钟伟. 基于进口节流调速气缸爬行特性[J]. J4, 2012, 46(7): 1189-1194.
[11] 甘智华, 王博, 刘东立, 王任卓, 张学军. 空间液氦温区机械式制冷技术发展现状及趋势[J]. J4, 2012, 46(12): 2160-2177.
[12] 周昊, 吴剑波, 杨玉, 李亚鹏, 胡善涛, 岑可法. 旋流燃烧器出口气固两相流场的
光学波动法测量研究
[J]. J4, 2012, 46(12): 2189-2193.
[13] 吴学成, 王怀, 浦世亮, 浦兴国, 袁镇福, 陈玲红, 岑可法. 数字共轴全息中颗粒识别与定位[J]. J4, 2010, 44(4): 765-770.
[14] 方文敏, 成琳琳, 傅新, 周华, 杨华勇. 带U形节流槽的滑阀稳态液动力研究[J]. J4, 2010, 44(3): 574-580.
[15] 王勇, 孔令伟, 郭爱国, 柏巍. 气体释放速率对浅层气藏中气水运移的影响[J]. J4, 2010, 44(10): 1883-1889.