Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 767-774    DOI: 10.3785/j.issn.1008-973X.2021.04.020
机械与能源工程     
DTMB 4119螺旋桨噪声特性的数值模拟
詹志文(),张凌新*(),邓见,邵雪明
浙江大学 航空航天学院,浙江 杭州 310027
Numerical simulation of acoustic characteristics on DTMB 4119 propeller
Zhi-wen ZHAN(),Ling-xin ZHANG*(),Jian DENG,Xue-ming SHAO
School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1586 KB)   HTML
摘要:

将DTMB 4119型螺旋桨作为研究对象,在敞水和伴流条件下分别计算水动力学特性和非空化噪声声压级. 在多个进速系数下对单桨模型的敞水性能展开验证,与文献实验值比对验证准确性后,引入FW-H声类比方程求解监测点声压及频谱. 结果表明,现有模型可以在多个进速系数下取得较吻合的数值结果;单极子和偶极子噪声频谱在低频段出现显著高于宽带的线谱噪声,频率与桨叶BPF及谐波对应. 在轴向平面内,单极子噪声声压级呈现出8字形的分布特征,偶极子噪声声压级呈现出∞型的指向性分布. 伴流场不会改变单、偶极子总声压级的指向性,但会使得各方向线谱噪声声压级趋于均匀. 在径向平面内,单、偶极子的噪声声压级指向性不明显.

关键词: DTMB 4119水动力学性能非空化噪声声类比    
Abstract:

The hydrodynamic characteristics and non-cavitation noise sound pressure level were calculated considering open-water and wake flow conditions by taking DTMB 4119 propeller as research object. The open-water performance of single propeller was verified under various advance ratios by comparing with the literature experiment results. Then the FW-H analogy equation was introduced to calculate the acoustic pressure of the probes and their spectra. Results showed that the numerical results accorded well with the previous experiments in hydrodynamic performance for different advance ratios. The monopole and dipole noise spectra present marked tonal noise with higher sound pressure level than broadband spectra. Their frequencies corresponded to the blade BPF and its harmonics. The monopole noise presents apparent figure-8 source directivity distributions, and that of the dipole noise presents figure-∞ distributions in the axial plane. The wake field will not change the directivity of total sound pressure level of monopole and dipole, but it will make the sound pressure level of tonal noise in each direction tend to be uniform. The noise directivities of monopole and dipole are no longer obvious in the radial plane.

Key words: DTMB 4119    hydrodynamic performance    non-cavitation noise    acoustic analogy
收稿日期: 2020-10-19 出版日期: 2021-05-07
CLC:  TK 5  
基金资助: 国家自然科学基金资助项目(91852204,11772298)
通讯作者: 张凌新     E-mail: zhanzhiwen@zju.edu.cn;zhanglingxin@zju.edu.cn
作者简介: 詹志文(1995—),男,硕士生,从事螺旋桨噪声数值的研究. orcid.org/0000-0002-1450-7190. E-mail: zhanzhiwen@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
詹志文
张凌新
邓见
邵雪明

引用本文:

詹志文,张凌新,邓见,邵雪明. DTMB 4119螺旋桨噪声特性的数值模拟[J]. 浙江大学学报(工学版), 2021, 55(4): 767-774.

Zhi-wen ZHAN,Ling-xin ZHANG,Jian DENG,Xue-ming SHAO. Numerical simulation of acoustic characteristics on DTMB 4119 propeller. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 767-774.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.04.020        http://www.zjujournals.com/eng/CN/Y2021/V55/I4/767

图 1  艇和桨模型计算域布置示意图
图 2  纵截面网格示意图
工况 kt 10 kq
实验值 0.1487 0.280
网格A 0.1370 0.278
网格B 0.1372 0.280
网格C 0.1386 0.280
网格D 0.1386 0.280
表 1  单桨模型的网格独立性验证
图 3  A和B类监测点位置分布
图 4  DTMB 4119模型的敞水性能验证
图 5  DTMB 4119模型r=0.7R处截线的压力系数分布对比
图 6  均匀流下桨叶测点噪声声压级频谱与文献[7]的对比图
图 7  均匀流下桨叶4个A类测点的偶极子噪声声压级频谱图
图 8  均匀流下桨叶4个A类测点的单极子噪声声压级频谱图
图 9  均匀流下桨叶轴向平面的单、偶极子总声压级指向性
图 10  均匀流下桨叶径向平面的单、偶极子总声压级指向性
监测点 LpM /dB LpD /dB
A0 16.01 139.59
A3 87.03 138.43
A6 100.72 133.86
A9 105.33 106.73
表 2  均匀流下轴向平面内部分典型测点噪声成分
图 11  单艇模型上表面纵截线的压力系数分布图
工况 Fd /N E /%
实验值 102.30 ?
DES $k {\text{-} } \omega ,\;$ y+=60 105.40 +3.03
RANS $k {\text{-} } \omega,\;$ y+=60 105.63 +3.26
RANS $k {\text{-} } \varepsilon,\;$ y+=60 105.57 +3.20
表 3  不同湍流模型和壁面网格下的艇身总阻力对比
图 12  桨盘面圆周截线x方向无量纲速度随角度的分布
图 13  艇尾流场下桨叶4个A类测点的偶极子噪声声压级频谱图
图 14  桨叶在均匀流和伴流场下的轴向和径向激振力
图 15  艇尾流场下桨叶4个A类测点的单极子噪声声压级频谱图
图 16  艇尾流场下桨叶轴向平面单、偶极子总声压级指向性
监测点 LpM /dB LpD /dB
A0 13.64 140.33
A3 86.94 139.21
A6 101.76 134.75
A9 105.07 110.45
表 4  伴流场下轴向平面内部分测点噪声成分
1 LIGHTHILL M J On sound generated aerodynamically. I. general theory[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1952, 211 (1107): 564- 587
2 CURLE N The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1955, 231 (1187): 505- 514
3 WILLIAMS J E F, HAWKINGS D L Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1969, 264 (1151): 321- 342
doi: 10.1098/rsta.1969.0031
4 GORJI M, GHASSEMI H, MOHAMADI J Calculation of sound pressure level of marine propeller in low frequency[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37 (1): 60- 73
doi: 10.1177/1461348418757884
5 魏应三, 王永生, 杨琼方, 等 单叶片桨噪声相移叠加法预报多叶片船舶螺旋桨非空化低频噪声[J]. 声学学报, 2016, 41 (3): 390- 397
WEI Ying-san, WANG Yong-sheng, YANG Qiong-fang, et al Prediction of propeller non-cavitation noise by superimposing shifted sound signal from an isolated blade[J]. Acta Acoustica, 2016, 41 (3): 390- 397
6 侯知音, 王超, 白雪夫 基于CFD的对转桨无空泡噪声的仿真预报[J]. 船海工程, 2015, 44 (4): 37- 40
HOU Zhi-yin, WANG Chao, BAI Xue-fu Noise characteristics without cavitation prediction simulation of contra-rotating propeller based on CFD[J]. Ship and Ocean Engineering, 2015, 44 (4): 37- 40
doi: 10.3963/j.issn.1671-7953.2015.04.010
7 龚京风, 张文平, 明平剑, 等 螺旋桨低频流噪声模拟方法研究[J]. 中国舰船研究, 2012, 7 (5): 14- 21
GONG Jing-feng, ZHANG Wen-ping, MING Ping-jian, et al Numerical analysis of the propeller low frequency flow-noise[J]. Chinese Journal of Ship Research, 2012, 7 (5): 14- 21
8 SUN Y, LIU W, LI T Numerical investigation on noise reduction mechanism of serrated trailing edge installed on a pump-jet duct[J]. Ocean Engineering, 2019, 191: 106489
doi: 10.1016/j.oceaneng.2019.106489
9 PAN Y, ZHANG H, ZHOU Q Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11 (2): 899- 913
doi: 10.1016/j.ijnaoe.2019.04.002
10 ?ZDEN M C, GüRKAN A Y, ?ZDEN Y A, et al Underwater radiated noise prediction for a submarine propeller in different flow conditions[J]. Ocean Engineering, 2016, 126: 488- 500
doi: 10.1016/j.oceaneng.2016.06.012
11 CARLTON J S. Marine propellers and propulsion [M]. [S.l.]: Butterworth-Heinemann, Elsevier, 2012.
12 LIU H, HUANG T T. Summary of DARPA SUBOFF experimental program data [R]. West Bethesda: Naval Surface Warfare Center, Carderock Division (NSWCCD), 1998.
13 EBRAHIMI A, SEIF M S, NOURI-BORUJERDI A Hydrodynamic and acoustic performance analysis of marine propellers by combination of panel method and FW-H equations[J]. Mathematical and Computational Applications, 2019, 24 (3): 81
doi: 10.3390/mca24030081
14 FELICE F D, FELLI M, LIEFVENDAHI M, el al. Numerical and experimental analysis of the wake behavior of a generic submarine propeller [C]// 1st International Symposium on Marine Propulsors. Trondheim, Norway: MARINTEK, 2009.
15 曾赛, 杜选民, 范威, 等 对转桨和单桨空泡水筒噪声测量对比试验研究[J]. 船舶力学, 2018, 22 (7): 896- 907
ZENG Sai, DU Xuan-min, FAN Wei, et al Measurement and comparison analysis of the noise for counter-rotation propeller and single propeller tested in cavitation tunnel[J]. Journal of Ship Mechanics, 2018, 22 (7): 896- 907
doi: 10.3969/j.issn.1007-7294.2018.07.014
16 曾赛. 对转桨无空泡线谱噪声数值模拟与实验研究[D]. 北京: 中国舰船研究院, 2015.
ZENG Sai. Numerical simulation and experimental study of non-cavitation line-spectrum noise of underwater counter-rotation propeller [D]. Beijing: China Ship Research Institute, 2015.
17 BAGHERI M R, SEIF M S, MEHDIGHOLI H, et al Analysis of hydrodynamics and noise prediction of the marine propellers under cavitating and non-cavitating conditions[J]. Scientia Iranica. Transaction B, Mechanical Engineering, 2015, 22 (5): 1918
18 MOUSAVI B, RAHROVI A, KHERADMAND S Numerical simulation of tonal and broadband hydrodynamic noises of non-cavitating underwater propeller[J]. Polish Maritime Research, 2014, 21 (3): 46- 53
doi: 10.2478/pomr-2014-0029
19 孙瑜. 舰艇推进器若干降噪措施及其效果研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
SUN Yu. Research on some noise-reduction measures and their effects of marine propulsions [D]. Harbin: Harbin Engineering University, 2017.
20 JESSUP S D. An experimental investigation of viscous aspects of propeller blade flow [D]. Washington D.C. : The Catholic University of America, 1989.
21 朱锡清, 李亚, 孙红星 船舶螺旋桨叶片与艉部湍流场互作用噪声的预报研究[J]. 声学技术, 2006, 25 (4): 361- 364
ZHU Xi-qing, LI Ya, SUN Hong-xing Prediction of noise induced by interaction between turbulent flow and propeller blades[J]. Technical Acoustics, 2006, 25 (4): 361- 364
doi: 10.3969/j.issn.1000-3630.2006.04.019
[1] 易仁义,王勇,谢玉东,乔凯,张宇磊. 液态金属磁流体发电机空载电压[J]. 浙江大学学报(工学版), 2020, 54(10): 1964-1970.
[2] 卜宪标,冉运敏,王令宝,雷军民,李华山. 单井地热供暖关键因素分析[J]. 浙江大学学报(工学版), 2019, 53(5): 957-964.
[3] 张琳琳, 赵蕾, 杨柳. 管群间歇散热的土壤温度响应与恢复特性[J]. 浙江大学学报(工学版), 2016, 50(2): 299-305.
[4] 李媛, 尹雪峰, 张志磊. 负钛铜基载氧体在煤化学链燃烧中多环芳烃的生成[J]. 浙江大学学报(工学版), 2016, 50(2): 360-368.
[5] 胡建辉, 陈务军, 赵兵, 宋浩. PV-ETFE气枕系统冬季性能试验研究[J]. 浙江大学学报(工学版), 2014, 48(10): 1816-1821.
[6] 张艳梅,肖刚,骆仲泱,杨天锋,郭凯凯,倪明江. 太阳能碟式二次反射系统的光路分析与比较[J]. 浙江大学学报(工学版), 2014, 48(7): 1260-1264.
[7] 吴改, 程 军, 张梦, 周俊虎, 岑可法. 太阳能光电催化还原CO2的最新研究进展[J]. J4, 2013, 47(4): 680-686.
[8] 张长兴, 胡松涛, 刘玉峰, 丛晓春. 基于系统优化的岩土热物性确定方法[J]. J4, 2012, 46(12): 2237-2242.
[9] 陈欢,王红梅,俞自涛,胡亚才,张良,倪煜,樊建人. 自然循环槽式太阳能中高温集热系统实验研究[J]. J4, 2012, 46(9): 1666-1670.
[10] 张国月,曲轶龙,齐冬莲,李冉. 基于重复控制的三电平光伏逆变技术[J]. J4, 2012, 46(7): 1339-1344.
[11] 孔祥强, 张东, 李瑛, 杨前明. 制冷剂工质裸板太阳能集热器热性能模拟[J]. J4, 2011, 45(2): 217-221.