Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
管群间歇散热的土壤温度响应与恢复特性
张琳琳1, 赵蕾1, 杨柳2
1. 西安建筑科技大学 环境与市政工程学院,陕西 西安 710055; 2. 西安建筑科技大学 建筑学院,陕西 西安 710055
Soil temperature response and recovery characteristics of intermittent heat emission in multi boreholes
ZHANG Lin lin1, ZHAO Lei1, YANG Liu2
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China; 2. School of Architecture, Xi’an University of Architecture and Technology, Xi’an, 710055, China
 全文: PDF(2391 KB)   HTML
摘要:
为了分析地下水渗流作用下地埋管群的传热性能,基于移动有限长线热源模型解析解,结合叠加原理给出地埋管群在土壤中散热所引起的动态温度响应的解析解.对一个3×3顺排管群在土壤中的传热过程进行三维动态数值仿真,验证解析解的正确性.基于解析解研究地下水渗流作用下管群换热器连续和间歇散热所引起的土壤温度响应特征.结果表明:当间歇运行时,可缓解管群间的热干扰,使得土壤温升显著减小,即土壤温度得到一定程度的恢复.针对地埋管间歇散热的情况,探讨渗流速度和土壤热物性对土壤温度响应和恢复特性的影响规律.结果表明:渗流速度越大,土壤温度恢复的幅度越大,且土壤物性对土壤温度响应和恢复特性的影响也很明显.地埋换热管群所引起的土壤温度响应和恢复特性受地质状况和地下水渗流速度的综合作用影响.
Abstract:
An analytical model was established to analyze the dynamic soil temperature response to heat emission from multi boreholesbased on the superposition principle and the moving line heat source model to consider the influence of groundwater advection on heat transfer performance of multiple borehole heat exchangers. The analytical solution to the soil dynamic response to heat emission of a 3×3 multi boreholes arranged in line in the soil with groundwater advection was validated by transient 3 D numerical simulation results. The soil temperature changed to a continuous and an intermittent heat emission of the multi boreholes under the influence of groundwater advection were analyzed based on the analytical solutions. Results show that intermittent operation can reduce thermal interference among the multi boreholes in the soil and the temperature increment can be reduced significantly, that is, soil temperature can recover to some extent. The influence of groundwater advection velocity and soil thermal properties on soil temperature response and recovery characteristics was analyzed as well for the cases of intermittent heat emission. Result indicate that an increase in groundwater advection velocity leads to an increase in the magnitude of soil temperature recovery. And the soil physical properties also have impact on soil temperature recovery characteristics, which means that the soil temperature response and recovery characteristics to multi boreholes heat exchanger are comprehensively affected by geological conditions and groundwater advection.
出版日期: 2016-02-01
:  TK 172  
基金资助:

国家“十一五”科技部科技支撑计划资助项目(2014BAJ01B01).

通讯作者: 赵蕾,女,教授. ORCID: 0000 0002 8496 467X.     E-mail: leizhao0308@hotmail.com
作者简介: 张琳琳(1988—),女,博士生,从事土壤源热泵传热优化研究.ORCID:0000 0002 7433 4973. E-mail:zhangll226@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张琳琳, 赵蕾, 杨柳. 管群间歇散热的土壤温度响应与恢复特性[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.014.

ZHANG Lin lin, ZHAO Lei, YANG Liu. Soil temperature response and recovery characteristics of intermittent heat emission in multi boreholes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.014.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.014        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/299

[1] YANG W, ZHOU J, XU W, et al. Current status of ground source heat pumps in China [J]. Energy Policy, 2010, 38: 323-332.
[2] HAEHNLEIN S, MOLINA G N, BLUM P, et al. Cold plumes in groundwater for ground source heat pump systems [J]. Grundwasser, 2010, 15: 123-133.
[3] CHIASSON A D, REES S J, SPITLER J D. A preliminary assessment of the effects of ground water flow on closed loop ground source heat pumps systems [J]. ASHRAE Transaction, 2000, 106: 380-393.
[4] 范蕊,马最良,姚杨,等.地下水流动对地下埋管换热器影响的实验研究[J].太阳能学报, 2007,28(8): 874-880.
FAN Rui, MA Zui liang, YAO Yang, et al. Experimental research on influence of groundwater advection on performance of GHE [J]. Acta Energiae Solaris Sinica, 2007, 28(8): 874-880.
[5] 刁乃仁,李琴云,方肇洪.有渗流时地热换热器温度响应的解析解[J].山东建筑工程学院学报,2003,18(3): 1-5.
DIAO Nai ren, LI Qin yun, FANG Zhao hong. An analytical solution of the temperature response in geothermal heat exchangers with groundwater advection [J]. Journal of Shandong University of Architecture and Engineering, 200, 18(3): 1-5.
[6] 冯琛琛,王沣浩,张鑫,等.地下水渗流对垂直埋管换热器换热性能影响的实验研究[J].制冷与空调,2011,25(4): 328-331.
FENG Chen chen, WANG Feng hao, ZHANG Xin, et al. Experiment on the factors that groundwater flow influence the performance of the heat exchanger [J]. Refrigeration and air conditioning, 2011, 25(4): 328-331.
[7] 纪世昌,胡平放.U型垂直埋管换热器管群间热干扰的研究[J].制冷与空调,2007,7(8): 35-37.
JI Shi chang, HU Ping fang. Research on thermal disturbance among U vertical buried multi pipes [J]. Refrigeration and Air Conditioning, 2007, 7(8): 35-37.
[8] 周晋,汪庆军,张国强.垂直埋管换热器布置形式对地下换热特性的影响分析[J].流体机械, 2012, 40(9): 56-61.
ZHOU Jin, WANG Qing jun, ZHANG Guo qiang. Heat transfer analysis of vertical underground heat exchanger under different layout forms of pipe groups [J]. Fluid Machinery, 2012, 40(9): 56-61.
[9] JUNG CHAN C, JOONSANG P, SEUNG R L. Numerical evaluation of the effects of groundwater flow on borehole heat exchanger arrays [J]. Renewable Energy, 2013, 52: 230-240.
[10] 魏亚志,周国庆,刘卓典,等.渗流作用下地源热泵系统跨季节土壤蓄热特性[J].暖通空调,2011, 41(3): 143-147.
WEI Ya zhi, ZHOU Guo qing, LIU Zhuo dian, et al. Seasonal soil thermal storage in ground source heat pump system with groundwater seepage [J]. Heating Ventilating & Air Conditioning, 2011, 41(3): 143-147.
[11] 王子阳,张仪萍,战国会,等.有渗流时埋管换热器传热模型[J].浙江大学学报:工学版,2012, 46 (8): 1450-1456.
WANG Zi Yang, ZHANG Yi ping, ZHAN Guo hui, et al. Study on heat transfer model of underground heat exchangers with groundwater advection [J]. Journal of Zhejiang University: Engineering science, 2012, 46(8): 1450-1456.
[12] RUI Fan, YAN Gao, LI Hua, et al. Thermal performance and operation strategy optimization for a practical hybrid groundwater source heat pump system [J]. Energy and Buildings, 2014, 78: 238-247.
[13] Molina Giraldo N, BLUM P, ZHU K, et al. A moving finite line source model to simulate borehole heat exchangers with groundwater advection [J]. International Journal of Thermal Sciences, 2011, 50: 2506-2531.
[14] HELLSTROM G. Ground heat storage: thermal analysis of duct storage systems [D]. Department of Mathematical Physics,University of Lund,Sweden. 1991.
[15] ESKILSON P. Thermal analysis of heat extraction boreholes [D]. Department of mathematical Physics,university of Lund,Sweden, 1987.
[16] 连小鑫,刘金祥,陈晓春,等.垂直U型地埋管换热器的数值模拟分析[J].太阳能学报,2012, 33(1): 48-54.
LIAN Xiao xin, LIN Jin xiang, CHEN Xi chun, et al. Numerical simulation analysis on vertical U tube underground heat exchanger [J]. Acta Energiae Solaris Sinica, 2012, 33(1): 48-54.
[17] DIAO N R, LI Q Y, FANG Z H. Heat transfer in ground heat exchangers with groundwater advection [J]. International journal of thermal sciences, 2004, 43: 1203-1211.

[1] 巫江虹, 薛志强, 金鹏, 李会喜. 电动汽车热泵空调微通道换热器温度分布特性[J]. 浙江大学学报(工学版), 2016, 50(8): 1537-1544.
[2] 董永申, 王定标, 向飒, 夏春杰. 倾斜螺旋片强化的套管换热器数值模拟[J]. 浙江大学学报(工学版), 2015, 49(2): 309-314.
[3] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159.
[4] 姚华,盛德仁,陈坚红,李蔚,洪荣华. 重力热管蒸汽发生器热力学分析[J]. J4, 2012, 46(9): 1678-1684.
[5] 颜卫国,俞小莉,陆国栋,周健伟. 热管中冷器的传热与阻力特性[J]. J4, 2011, 45(1): 132-135.