Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 207-213    DOI: 10.3785/j.issn.1008-973X.2019.02.001
能源工程     
基于CFD分析的电动汽车电池包加热方法
黄钰期1(),梅盼1,陈晓济2,*(),邓长水2
1. 浙江大学 能源工程学院,浙江 杭州 310017
2. 福建易动力电子科技股份有限公司,福建 龙岩 364101
Heating strategy for electric vehicular battery pack based on CFD analysis
Yu-qi HUANG1(),Pan MEI1,Xiao-ji CHEN2,*(),Chang-shui DENG2
1. College of Energy Engineering, Zhejiang University, Hangzhou 310017, China
2. Fujian E-power Electronic Technology Co. Ltd, Longyan 364101, China
 全文: PDF(1359 KB)   HTML
摘要:

锂离子电池对温度环境要求严苛,在低温下常出现失效、寿命衰退等现象. 因此,为电池包设计高效、均匀且节能的加热方案,成为电动汽车在北方环境下发展的关键. 引入计算流体动力学(CFD)的仿真计算方法,并采用多孔介质理论对电池包中电池模块进行简化分析,对电动汽车电池包在加热过程中的温升特性进行仿真分析计算,将仿真计算结果与实测数据进行对比验证,证明所采用的仿真方法及多孔介质简化模型可有效应用于电动汽车电池包的加热方案评估. 根据分析结果对加热方案提出修正,并设计分块化的加热方案,即对局部加热功率进行控制. 计算结果显示,优化后的分块加热方案,在总体功率降低167 W(约7%)的情况下,仍然可在50 min内将电池包从?13 °C加热到5 °C,并且将电池包中电池区域最大温差控制在5 °C以内.

关键词: 锂离子电池加热仿真计算多孔介质简化实验验证    
Abstract:

The performance of lithium batteries relies significantly on the ambient temperature. They often become ineffective or demonstrate a shortened lifespan at low temperatures. Therefore, designing an effective, uniform, and energy-efficient heating system for the battery pack becomes the key to the development of electric vehicles in northern environment. The method of numerical simulation adopted from computational fluid dynamics (CFD) was introduced, and the porous theory was used to conduct a simplified analysis of battery module in the battery pack. The rise of temperature during the heating process of the battery pack of electric vehicles was simulated, and the simulation and experimental results were compared. Results showed that the combination of simulation method and porous simplification model was effective in evaluating the heating system of electric vehicle battery pack. The heating strategy was modified based on the analysis results, and a heating system that consisted of multiple heating zones was designed, which can keep the heating power of each part in control. Results showed that there was an overall power reduction of 167 W (about 7%) under the optimized multi-zone heating system, and the battery pack can still be heated from ?13 °C to 5 °C within 50 minutes, with the maximum temperature difference within the zones of the battery pack being kept under 5 °C.

Key words: lithium battery    heating    numerical simulation    porous simplification    experimental verification
收稿日期: 2018-01-10 出版日期: 2019-02-21
CLC:  TU 111  
通讯作者: 陈晓济     E-mail: huangyuqi@zju.edu.cn;epower_cxj@163.com
作者简介: 黄钰期(1979—),女,副教授,博士,从事车辆热管理及仿真分析研究. orcid.org/0000-0003-3152-5021. E-mail: huangyuqi@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
黄钰期
梅盼
陈晓济
邓长水

引用本文:

黄钰期,梅盼,陈晓济,邓长水. 基于CFD分析的电动汽车电池包加热方法[J]. 浙江大学学报(工学版), 2019, 53(2): 207-213.

Yu-qi HUANG,Pan MEI,Xiao-ji CHEN,Chang-shui DENG. Heating strategy for electric vehicular battery pack based on CFD analysis. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 207-213.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.001        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/207

图 1  电池包物理模型及电芯装配实物图
图 2  电池包仿真分析六面体网格模型
图 3  计算模型网格无关性检查
参数 参数取值
注:1) 将电芯考虑为多孔介质后,取均值1.8作为综合导热系数.
内含电芯个数 4 320
单电芯体积/m3 1.654×10?5
环境温度/°C ?13
目标温度/°C 5
电池包体积/m3 0.228
空气体积/m3 0.1(估算)
电芯总体积/m3 0.071 45
塑料件、电线、传感器、插头等配件体积/m3 0.056 55(估算)
电池包外壳对流换热系数/(W·m?2·K?1 5~20,仿真计算取5[23-25]
电池包外壳表面积/m2 2.844 5
电芯物性参数 密度/(kg·m?3 2 018
比热容/
(J·kg?1·K?1
1 282
导热系数/
(W·m?1·K?1
0.9(径向),2.7(周向/
轴向)1)
硅胶加热材料物性参数 密度/(kg·m?3 1 180
比热容/
(J·kg?1·K?1
1 750
导热系数/
(W·m?1·K?1
4
外壳及加热块(钢)物性参数 密度/(kg·m?3 8 030
比热容/
(J·kg?1·K?1
502.48
导热系数/
(W·m?1·K?1
16.27
表 1  电池包计算参数
图 4  电池包中加热片及测点相对位置
图 5  测试所用恒温舱照片
图 6  电池包温度及速度分布示意图
图 7  测点仿真温度与测试温度对比曲线
图 8  原方案实验测量点在不同时刻的温度分布
图 9  非均匀加热条件下优化方案的加热功率布置
W
方案类型 名称 加热功率
分块1 分块2 分块3 分块4 分块5 分块6 分块7 分块8
注:B'板为最外侧的2块B型板
原方案 A板 31.70 31.70 31.70 31.70 31.70 31.70 ? ?
B板 31.25 31.25 31.25 31.25 31.25 31.25 31.25 31.25
A板 23.00 23.00 20.70 20.70 23.00 23.00 ? ?
优化方案 B板 36.00 36.00 34.00 34.00 34.00 34.00 32.00 32.00
B'板 36.00 36.00 34.00 34.00 34.00 34.00 23.00 23.00
C板 23.00 23.00 20.70 20.70 20.70 20.70 23.00 23.00
表 2  原方案与优化方案各分块加热功率设置
图 10  优化方案的电池包中不同加热片位置
图 11  优化方案的电池区中截面温度分布云图
图 12  优化后各主要测点仿真温升曲线
1 霍宇涛, 饶中浩, 赵佳腾, 等 低温环境下电池热管理研究进展[J]. 新能源进展, 2015, 3 (1): 53- 57
HUO Yu-tao, RAO Zhong-hao, ZHAO Jia-teng, et al Research development of battery thermal management at low temperature[J]. Advances in New and Renewable Energy, 2015, 3 (1): 53- 57
doi: 10.3969/j.issn.2095-560X.2015.01.009
2 ZHANG X W, KONG X, LI G J, et al Thermodynamic assessment of active cooling/heating methods for lithium-ion batteries of electric vehicles in extreme conditions[J]. Energy, 2014, 64: 1092- 1101
doi: 10.1016/j.energy.2013.10.088
3 RAO Z H, WANG S F, ZHANG G Q Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery [J]. Energy Conversion and Management, 2011, 52 (12): 3408- 3414
doi: 10.1016/j.enconman.2011.07.009
4 RAO Z H, WANG S F A review of power battery thermal energy management[J]. Renewable and Sustainable Energy Reviews, 2011, 15 (9): 4554- 4571
doi: 10.1016/j.rser.2011.07.096
5 饶中浩. 基于固液相变传热介质的动力电池热管理研究[D]. 广州: 华南理工大学, 2013.
RAO Zhong-hao. Research on power battery thermal management based onsolid-liquid phase change heat transfer medium [D]. Guangzhou: South China University of Technology, 2013.
6 DUAN X, NATERER G F Heat transfer in phase change materials for thermal management of electric vehicle battery modules[J]. International Journal of Heat and Mass Transfer, 2010, 53 (23/24): 5176- 5182
7 RAO Z, WANG S, ZHANG Y Thermal management with phase change material for a power battery under cold temperatures[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36 (20): 2287- 2295
doi: 10.1080/15567036.2011.576411
8 HUO Y, RAO Z Investigation of phase change material based battery thermalmanagement at cold temperature using lattice Boltzmann method[J]. Energy Conversion and Management, 2017, 133: 204- 215
doi: 10.1016/j.enconman.2016.12.009
9 PESARAN A, VLAHINOS A, STUART T. Cooling and preheating of batteries in hybrid electric vehicles [C] // Proceedings of the 6th ASME-JSME Thermal Engineering Joint Conference. Hawaii: [s. n.], 2003: 1–7.
10 COSLEY M R, GARCIA M P. Battery thermal management system [C] // Proceedings of the INTELEC 26th Annual International Telecommunications Energy Conference. Chicago: [s. n.], 2004: 38–45.
11 HANDE A, STUART T A. AC heating for EV/HEV batteries [C]// Proceedings of the Power Electronics in Transportation. Portugal: [s. n.], 2002: 119–124.
12 HANDE A Internal battery temperature estimation using series battery resistance measurements during cold temperatures[J]. Journal of Power Sources, 2006, 158 (2): 1039- 1046
doi: 10.1016/j.jpowsour.2005.11.027
13 HANDE A. A high frequency inverter for cold temperature battery heating [C] // Proceedings of the 2004 IEEE Workshop on Computers in Power Electronics. Portugal: IEEE, 2004: 215–222.
14 张承宁, 雷治国, 董玉刚 电动汽车锂离子电池低温加热方法研究[J]. 北京理工大学学报, 2012, 39 (9): 921- 925
ZHANG Cheng-ning, LEI Zhi-guo, DONG Yu-gang Method for heating low-temperature lithium battery in electric vehicle[J]. Transactions of Beijing Institute of Technology, 2012, 39 (9): 921- 925
doi: 10.3969/j.issn.1001-0645.2012.09.009
15 LEFEBVRE L Smart battery thermal management for PHEV efficiency[J]. Oil and Gas Science and Technology-Revue D IFP Energies Nouvelles, 2013, 68 (1): 149- 164
16 FLIPSE J, BAKKER F L, SLACHTER A, et al Direct observation of the spin-dependent Peltier effect[J]. Nature Nanotechnology, 2012, 7 (3): 166- 168
doi: 10.1038/nnano.2012.2
17 WIJNGAARDS D D L, WOLFFENBUTTEL R F Study on temperature stability improvement of on-chip reference elements using integrated Peltier coolers[J]. IEEE Transactions on Instrumentation and Measurement, 2003, 52 (2): 478- 482
doi: 10.1109/TIM.2003.810004
18 TROXLER Y, WU B, MARINESCU M, et al The effect of thermal gradients on the performance of lithium-ion batteries[J]. Journal of Power Sources, 2014, 247: 1018- 1025
doi: 10.1016/j.jpowsour.2013.06.084
19 SALAMEH Z M, ALAOUI C. Modeling and simulation of a thermal management system for electric vehicles [C] // Proceedings of the Industrial Electronics Society. Roanoke: IEEE, 2003: 887–890.
20 ALAOUI C, SALAMEH Z M A novel thermal management for electric and hybrid vehicles[J]. IEEE Transactions on Vehicular Technology, 2005, 54 (2): 468- 476
doi: 10.1109/TVT.2004.842444
21 LEE D Y, CHO C W, WON J P, et al Performance characteristics of mobile heat pump for a large passenger electric vehicle[J]. Applied Thermal Engineering, 2013, 50 (1): 660- 669
doi: 10.1016/j.applthermaleng.2012.07.001
22 袁昊, 王丽芳, 王立业 基于液体冷却和加热的电动汽车电池热管理系统[J]. 汽车安全与节能学报, 2012, 3 (4): 371- 380
YUAN Hao, WANG Li-fang, WANG Li-ye Battery thermal management system with liquid cooling and heating in electric vehicles[J]. Journal of Automotive Safety and Energy, 2012, 3 (4): 371- 380
doi: 10.3969/j.issn.1676-8484.2012.04.011
23 PESARAN A, KEYSER M, BURCH S. An approach for designing thermal managementsystems for electric and hybrid vehicle battery packs [C]// Proceeding of the 4th Vehicle Thermal Management Systems Conference and Exhibition. London: Professional Engineering Publishing Ltd, 1999.
24 ZHU C, LI X, SONG L, et al Development of a theoretically based thermalmodel for lithium-ion battery pack[J]. Journal of Power Sources, 2013, 223: 155- 164
doi: 10.1016/j.jpowsour.2012.09.035
[1] 潘斌,董栋,钱东培,钮树强,刘双宇,姜银珠. 磷酸铁锂电池内阻分量快速检测方法[J]. 浙江大学学报(工学版), 2021, 55(1): 189-194.
[2] 朱清,任王瑜,姜孝男,陈卫祥. Bi2S3-MoS2/石墨烯复合材料的合成及电化学储锂性能[J]. 浙江大学学报(工学版), 2019, 53(7): 1306-1314.
[3] 孙潮,梅德清,徐行,李立昌,袁银男. 水平板上固着碳纳米管燃油液滴的蒸发特性[J]. 浙江大学学报(工学版), 2019, 53(2): 234-240.
[4] 徐强, 舒展, 王伟伟, 朱伟东. 自动铺放红外热源方程的建立与试验验证[J]. 浙江大学学报(工学版), 2018, 52(7): 1376-1389.
[5] 葛云龙, 陈自强, 郑昌文. UTSTF锂离子电池时变参数估计与故障诊断[J]. 浙江大学学报(工学版), 2018, 52(6): 1223-1230.
[6] 李斌, 陈安生, 刘红侠, 温才, 魏岚, 唐金龙. 新器件结构SGOI低场迁移率模型及数值分析[J]. J4, 2013, 47(1): 77-82.
[7] 郑卫东, 水淼, 任政娟, 舒杰, 徐丹, 张瑞丰. 高岭土掺杂NASICON固体电解质及全固态电池性能[J]. J4, 2012, 46(2): 237-242.
[8] 李辉,李赫,常焜,陈卫祥. Sn/C纳米复合材料的合成及其电化学嵌放锂性能[J]. J4, 2011, 45(5): 919-922.
[9] 马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.
[10] 张伟勇, 李映, 黄德先, 伊佳, 张志印, 杨向党. 基于稳态模型的加热炉烟风系统控制[J]. J4, 2011, 45(12): 2093-2098.
[11] 王启涵, 姚缨英. 电磁感应加热中控制电压的计算[J]. J4, 2010, 44(8): 1553-1557.
[12] 吴玲玲 吴仁兵 杨光义 陈建军 翟蕊 林晶 潘颐. 硅热蒸发法制备SiC纳米线及其结构表征[J]. J4, 2008, 42(3): 485-488.
[13] 苏福永 刘训良 温治 冯霄红 董斌. 双蓄热式环形炉内流动与传热过程的数值模拟[J]. J4, 2007, 41(10): 1750-1753.
[14] 宋小飞 刘训良 温治 冯俊小 石洪志 饶文涛. 空气单蓄热室状加热炉内传输过程的数值模拟[J]. J4, 2007, 41(10): 1768-1772.
[15] 谢健 赵新兵 曹高劭 涂江平. 纳米CoSb作为锂离子电池新型负极材料的研究[J]. J4, 2006, 40(4): 638-641.