Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (7): 1376-1389    DOI: 10.3785/j.issn.1008-973X.2018.07.019
机械与能源工程     
自动铺放红外热源方程的建立与试验验证
徐强, 舒展, 王伟伟, 朱伟东
浙江大学 流体动力与机电系统国家重点实验室, 浙江省先进制造技术重点研究实验室, 浙江 杭州 310027
Establishment and test verification of infrared heat source equation in automated placement
XU Qiang, SHU Zhan, WANG Wei-wei, ZHU Wei-dong
State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 全文: PDF(4481 KB)   HTML
摘要:

为了指导自动铺放红外热源的设计,分析红外热源灯罩间接辐射和灯管直接辐射的热流分布.通过引入角系数密度,考虑红外灯长度与安装高度、灯罩各面宽度与角度及灯管辐射功率与安装位置等设计参数,建立参数化的热源方程.采用有限元和试验相结合的方法,分析红外灯动态和静态加热过程,所测定被加热表面的温度仿真结果与试验结果吻合良好,验证了该红外热源方程的有效性.利用该热源方程,研究红外灯参数对辐射热流的影响.结果表明,当红外灯顶面高度从0.10 m降低到0.06 m时,有效辐射强度升高1.5倍,均匀度降低31.08%;将灯罩侧面角度设计为60°~75°,适当减小灯罩顶面宽度,可以提高红外灯的有效辐射强度和均匀度.

Abstract:

A parameterized heat source equation was established based on the analysis of heat flux distribution from infrared lampshades indirectly and tubes directly in order to guide the design of infrared source in automated placement. The design parameters of infrared lamp such as installation height, length, width and angle of the lampshades, radiation power and position of the tubes were considered by introducing the density of view factor. The process of dynamic and static infrared heating was analyzed by combining finite element simulation and test. The simulation results of temperature on heated surface accorded well with the test results. The heat source equation was verified. The influence of the design parameters of infrared lamp on its heat flux distribution was analyzed. The effective radiation strength increased 1.5 times and the effective radiation uniformity dropped by 31.08% as the installation height of infrared lamp was reduced from 0.10 m to 0.06 m. A growth in effective radiation strength and uniformity could be reached when designing the angles of side lampshades in the range of 60~75 degrees or shortening the width of top lampshade.

收稿日期: 2017-12-29 出版日期: 2018-06-26
CLC:  V261  
基金资助:

国家自然科学基金创新研究群体科学基金资助项目(51521064);中央高校基本科研业务费专项资金资助项目(2018FZA4004).

通讯作者: 朱伟东,男,副教授.orcid.org/0000-0003-4067-1450.     E-mail: wdzhu@zju.edu.cn
作者简介: 徐强(1985-),男,讲师,从事先进复合材料制造工艺仿真研究.orcid.org/0000-0002-1335-7450.E-mail:xuqiang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐强, 舒展, 王伟伟, 朱伟东. 自动铺放红外热源方程的建立与试验验证[J]. 浙江大学学报(工学版), 2018, 52(7): 1376-1389.

XU Qiang, SHU Zhan, WANG Wei-wei, ZHU Wei-dong. Establishment and test verification of infrared heat source equation in automated placement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(7): 1376-1389.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.07.019        http://www.zjujournals.com/eng/CN/Y2018/V52/I7/1376

[1] 顾轶卓,李敏,李艳霞,等.飞行器结构用复合材料制造技术与工艺理论进展[J].航空学报,2015,36(8):2773-2797. GU Yi-zhuo, LI Min, LI Yan-xia, et al. Progress on manufacturing technology and process theory of aircraft composite structure[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2773-2797.
[2] 文立伟,肖军,王显峰,等.中国复合材料自动铺放技术研究进展[J].南京航空航天大学学报,2015,47(5):637-649. WEN Li-wei, XIAO Jun, WANG Xian-feng, et al. Progress of automated placement technology for composites in china[J]. Journal of Nanjing University of Aeronautics Astronautics, 2015, 47(5):637-649.
[3] LUKASZEWICZ D H, WARD C, POTTER K. The engineering aspects of automated prepreg layup:history, present and future[J]. Composites Part B:Engineering, 2012, 43(3):997-1009.
[4] LUKASZEWICZ D H, Adrian H J. Optimisation of high-speed automated layup of thermoset carbon-fibre preimpregnates[D]. Bristol:University of Bristol,2011.
[5] SCHLEDJEWSKI R, LATRILLE M. Processing of unidirectional fiber reinforced tapes-fundamentals on the way to a process simulation tool (ProSimFRT)[J]. Composites Science and Technology, 2003, 63(14):2111-2118.
[6] LUKASZEWICZ D H, POTTER K. Through-thickness compression response of uncured prepreg during manufacture by automated layup[J]. Journal of Engineering Manufacture, 2012, 226(10):193-202.
[7] GUAN X, PITCHUMANI R. Modeling of spherulitic crystallization in thermoplastic tow-placement process:heat transfer analysis[J]. Composites Science and Technology, 2004, 64(9):1123-1134.
[8] CROSSLEY R J, SCHUBEL P J, WARRIOR N A. The experimental determination of prepreg tack anddynamic stiffness[J]. Composites Part A:Applied Science and Manufacturing, 2011, 43(3):423-434.
[9] 陆楠楠,肖军,齐俊伟,等.面向自动铺放预浸料动态黏性实验研究[J].航空学报,2014,35(1):279-286. LU Nan-nan, XIAO Jun, QI Jun-wei, et al. Experimental research on prepreg dynamic tack based on automated placement process[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):279-286.
[10] 文琼华,王显峰,何思敏,等.温度对预浸料铺放效果的影响[J].航空学报,2011,32(9):1740-1745. WEN Qiong-hua, WANG Xian-feng, HE Si-min, et al. Influence of temperature on placement effect of prepreg[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1740-1745.
[11] 黄志军,王显峰,戴振东,等.动铺放过程双马树脂预浸料温度与黏度[J].复合材料学报,2012,29(3):49-53. HUANG Zhi-jun, WANG Xian-feng, DAI Zhen-dong, et al. Temperature and viscosity of bismaleimide resin prepregs in automated tape laying process[J]. Acta Materiae Compositae Sinica, 2012, 29(3):49-53.
[12] 段玉岗,刘芬芬,陈耀,等.纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J].复合材料学报,2012,29(4):148-156. DUAN Yu-gang, LIU Fen-fen, CHEN Yao, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4):148-156.
[13] TIERNEY J, GILLESPIE J. Modeling of heat transfer and void dynamics for the thermoplastic composite tow-placement process[J]. Journal of Composite Materials, 2003, 37(19):1745-1768.
[14] GROUVE W. Weld strength of laser-assisted tape-placed thermoplastic composites[D]. Enschede:University of Twente, 2012.
[15] KHAN M A, MITSCHANG P, SCHLEDJEWSKI R. Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process[J]. Journal of Composite Materials, 2013,47(4):485-499.
[16] GROVE S M. Thermal modelling of tape laying with continuous carbon fibre-reinforced thermoplastic[J]. Composites, 1988, 19(5):367-375.
[17] SARRAZIN H, SPRINGER G. Thermomechanical and mechanical aspects of composite tape laying[J]. Journal of Composite Materials, 1995, 29(29):1908-1943.
[18] NEJHAD M, COPE R, GUCERI S. Thermal analysis of in-situ thermoplastic composite tape laying[J]. Journal of Thermoplastic Composite Materials, 1991,4(1):20-45.
[19] KIM H J, SUN K K, LEE W I. A study on heat transfer during thermoplastic composite tape lay-up process[J]. Experimental Thermal and Fluid Science, 1996, 13(4):408-418.
[20] HASSAN N. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005,24(8):869-888.
[21] CHINESTA F, LEYGUE A, BOGNET B, et al. First steps towards an advanced simulation of composites manufacturing by automated tape placement[J]. International Journal of Material Forming, 2014, 7(1):81-92.
[22] SONMEZ F O, HAHN H T. Modeling of heat transfer and crystallization in thermoplastic composite tape placement process[J]. Journal of Thermoplastic Composite Materials, 1997, 10(3):198-240.
[23] TUMKOR S, TURKMEN N, CHASSAPIS C, et al. Modeling of heat transfer in thermoplastic composite tape lay-up manufacturing[J]. International Communications in Heat and Mass Transfer, 2001, 28(1):49-58.
[24] STOKES C M, COMPSTON P, MATUSZYK T I, et al. Thermal modelling of the laser-assisted thermoplastic tape placement process[J]. Journal of Thermoplastic Composite Materials, 2015, 45(10):1-18.
[25] SCHLEDJEWSKI R. Thermoplastic tape placement process-in situ consolidation is reachable[J]. Plastics Rubber and Composites, 2009, 38(10):379-386.
[26] ORTH T. A review of radiative heating in automated layup and its modeling[J]. Journal of Plastics Technology, 2017, 2(2):91-125.
[27] CALAWA R, NANCARROW J. Medium wave infrared heater for high-speed fiber placement[C]//Aerospace Technology Conference and Exposition. Los Angeles:[s.n.], 2007.
[28] JAMES D L, BLACK W Z. Thermal analysis of continuous filament-wound composites[J]. Journal of Thermoplastic Composite Materials, 1996, 9(1):54-75.
[29] GROVE S M. Thermal modelling of tape laying with continuous carbon fibre-reinforced thermoplastic[J]. Composites, 1988, 19(5):367-375.
[30] CHERN B C, MOON T J, HOWELL J R. On-Line processing of unidirectional fiber composites using radiative heating:I. model and Ⅱ. radiative properties, experimental validation and process parameter selection[J]. Journal of Composite Materials, 2002, 36(16):1905-1965.
[31] CHERN B C, MOON T J, HOWELL J R. Thermalanalysis of in-situ curing for thermoset, hoop-wound structures using infrared heating:Part I-predictions assuming independent scattering and Part Ⅱ-dependent scattering effect[J]. Journal of Heat Transfer, 1995, 117(3):674-686.
[32] HÖRMANN P, STELZL D, LICHTINGER R, et al. On the numerical prediction of radiative heat transfer for thermoset automated fiber placement[J]. Composites Part A:Applied Science and Manufacturing, 2014, 67:282-288.
[33] LICHTINGER R, HÖRMANN P, STELZL D, et al. The effects of heat input on adjacent paths during automated fiber placement[J]. Composites Part A:Applied Science and Manufacturing, 2015, 68:387-397.
[34] 余永波,文立伟,肖军,等.自动铺带中红外加热技术研究[J].航空学报,2011,32(6):1124-1131. YU Yong-bo, WEN Li-wei, XIAO Jun, et al. Study of infrared heating technology in automatic tape-laying[J]. Acta Aeronautica et Astronautica Sinica, 2011,32(6):1124-1131.
[35] 文立伟,余永波,齐俊伟,等.基于自动铺放成型的红外加热系统研究[J].航空学报,2011,32(10):1937-1944. WEN Li-wei, YU Yong-bo, QI Jun-wei, et al. Study on infrared heating system based on automatic tape laying[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1937-1944.
[36] INCROPERA F P, DEWITT D. Fundamentals of heat and mass transfer[M]. New York:Katson, 1990:12-13, 492-500, 581-582.

No related articles found!