Please wait a minute...
J4  2011, Vol. 45 Issue (2): 354-357    DOI: 10.3785/j.issn.1008-973X.2011.02.025
能源工程、化学工程     
水热合成纳米片状SnS2及其电化学贮放锂性能
马琳1,2, 李辉2, 常焜2, 李赫3, 陈卫祥2
1. 湛江师范学院 化学科学与技术学院,广东 湛江 524048; 2. 浙江大学 化学系,浙江 杭州310027;
3. 浙江树人大学 生物与环境学院,浙江 杭州 310027
Synthesis of SnS2 nanosheets and their electrochemical performances
used as anode materials of Li-ion battery
MA Lin1,2, LI Hui2, CHANG Kun2, LI He3, CHEN Wei-xiang2
1. Chemistry Science and Technology School, Zhanjiang Normal University, Zhanjiang 524048, Chian; 2. Department
 of Chemistry, Zhejiang University, Hangzhou 310027, China; 3. College of Biology and Environmental Engineering,
Zhejiang Shuren University, Hangzhou 310015, China
 全文: PDF  HTML
摘要:

用四氯化锡(SnCl4)和L-半胱氨酸(L-Cys)的水热反应合成纳米片状的SnS2,用X-射线衍射(XRD)和透射电镜(TEM)对其微观结构和形貌进行表征.讨论了SnCl4与L-Cys物质的量比对产物及其形貌的影响.结果显示,当SnCl4与L-Cys的物质的量比为1∶2,得到的产物是SnS2和SnO2纳米粒子的混合物;当SnCl4与L-Cys的物质的量比为1∶4~1∶6,得到的产物是纳米片状的SnS2.电化学测试结果显示,纳米片状SnS2作为锂离子电池负极材料具有较高的可逆容量和良好的循环稳定性,其初始容量为480 mAh/g,80次循环后其容量为407 mAh/g.

Abstract:

SnS2 nanosheets were prepared by the hydrothermal reaction of mixture solution of SnCl4 and L-cysteine, and characterized by XRD and TEM. The influences on the products and their morphologies of the mol ratio of SnCl4 to L-cysteine were investigated. It was found that the mixture of SnS2 and SnO2 nanoparticles was obtained when the mol ratio of SnCl4 to L-cysteine was 1∶2, and SnS2 nanosheets were obtained when the mol ratio of SnCl4 to L-cysteine was 1∶4~1∶6. Electrochemical tests demonstrated that the SnS2 exhibited high reversible capacity and good cycling performances used as anode materials of Li-ion battery. Its reversible capacity was 480 and 407 mAh/g, respectively, at the first and 80th cycle.

出版日期: 2011-03-17
:  TM 911.4  
基金资助:

浙江省自然科学基金资助项目(Y407030,Y4100119), 国家重点基础研究发展计划“973”资助项目 (2010CB635116);广东省自然科学基金博士科研启动资助项目(10452404801004521).

通讯作者: 陈卫祥, 男, 教授, 博导.     E-mail: weixiangchen@zju.edu.cn
作者简介: 马琳(1975—), 男, 河南新乡人, 博士, 从事无机纳米功能纳米材料研究
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

马琳, 李辉, 常焜, 李赫, 陈卫祥. 水热合成纳米片状SnS2及其电化学贮放锂性能[J]. J4, 2011, 45(2): 354-357.

MA Lin, LI Hui, CHANG Kun, LI He, CHEN Wei-xiang. Synthesis of SnS2 nanosheets and their electrochemical performances
used as anode materials of Li-ion battery. J4, 2011, 45(2): 354-357.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2011.02.025        http://www.zjujournals.com/eng/CN/Y2011/V45/I2/354

[1] TRIFONOVA E P, YANCHEV I Y, STOYANOVA V B, et al., Crystal growth and characterization of SnS2 [J], Materials Research Bulletin, 1996, 31(8): 919-924.
[2] BROUSSE T, LEE S M, PASQUEREAU L, DEFIVES D, et al. Composite negative electrodes for lithium ion cells [J]. Solid State Ionics, 1998, 113115: 51-56.
[3] MOMMA T, SHIRAISHI N, YOSHIZAWA A, et al., SnS2 anode for rechargeable lithium battery [J]. Journal of Power Sources, 2001, 9798: 198-200.
[4] MUKAIBO H, YOSHIZAWA A, MOMMA T, et al. Particle size and performance of SnS2 anodes for rechargeable lithium batteries [J]. Journal of Power Sources, 2003, 119121: 60-63.
[5] SEO J W, JANG J T, PARK S W, et al. Twodimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries [J]. Advanced Materials. 2008, 20(22): 4269-4273.
[6] KIM T J, KIM C, Son D, et al. Novel SnS2nanosheet anodes for lithiumion batteries [J]. Journal of Power Sources, 2007, 67: 529-535.
[7] ZHANG B, YE X C, HOU W Y, et al. Biomoleculeassisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with wellaligned nanorods [J]. Journal of Physical Chemistry B, 2006, 110(18) 8978-8985.
[8] CHEN L Y, ZHANG Z D, WANG W Z. Selfassembled porous 3D flowerlike betaIn2S3 structures: Synthesis, characterization, and optical properties [J]. Journal of Physical Chemistry C, 2008, 112(11): 4117-4123.
[9] ZHAO P, HUANG T, HUANG K. Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes [J]. Journal of Physical Chemistry C, 2007, 111(35): 12890-12897.

[1] 马琳,肖玉凤,赵杰,陈卫祥. 中空Pd/C催化剂的合成及其对甲酸氧化电催化性能[J]. J4, 2011, 45(5): 923-927.