Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (2): 214-219    DOI: 10.3785/j.issn.1008-973X.2019.02.002
能源工程     
微藻水热提取油脂经脱氧断键制航油
程军(),刘建峰,张曦,张泽,田江磊,周俊虎,岑可法
浙江大学 能源清洁利用国家重点实验室,浙江 杭州 310027
Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel
Jun CHENG(),Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
 全文: PDF(865 KB)   HTML
摘要:

为了提高微藻转化制航油的产物选择性,利用连续流水热装置提取微藻油脂,并经催化剂脱氧断键制航油. 使用亚临界水从微藻细胞中提取得到C16~C24的脂肪酸,将脂肪酸在镍基介孔Y分子筛催化剂作用下脱氧断键得到航油产物,结果显示在390 °C时航油产物的整体选择性高达50.79%,其中烷烃选择性为43.21%. 微藻水热油脂的主要成分为C16脂肪酸,其经过脱羧反应生成航油主要产物C15正构烷烃. 傅里叶变换红外光谱学结果显示航油产物出现C=C双键、?CHO醛基以及?CH2烷基的吸收峰,表明Ni/Y催化剂能有效催化微藻水热油脂脱氧断键. 元素分析结果显示使用水热油脂制备的航油产物中碳和氢元素质量分数高于利用藻粉制备的航油产物中碳和氢元素质量分数. 量子化学计算表明,C16脂肪酸中的羧基碳原子与邻位碳原子之间的键长最短(0.080 071 nm)、键能最高(361.074 5 kJ/mol),但是Ni?H能拉长这2个碳原子之间的键长,使其更容易发生脱羧反应.

关键词: 微藻航空燃油脱羧量子化学    
Abstract:

The microalgae lipids extracted by continuous flow hydrothermal equipment were deoxidized and hydrocracked under the action of catalyst to produce jet fuel, in order to improve the selectivity of jet fuel from microalgae. The C16~C24 fatty acid was extracted from the microalgae cells by subcritical water, and the fatty acid was deoxidized and hydrocracked under the action of Ni-based mesoporous Y zeolite catalyst to obtain the jet fuel product. Results showed that the selectivity of jet fuel product at 390 °C was 50.79%, with the alkane selectivity of 43.21%. The main component of microalgae hydrothermal lipid was palmitic acid, of which the main jet fuel product after decarboxylation was pentadecane. Fourier transform infrared spectroscopy results showed that the absorption peaks of C=C, ?CHO, and ?CH 2 appeared in the product, indicating that the Ni/Y catalyst can effectively promote the deoxygenation and hydrocracking of the microalgae hydrothermal lipid. Elemental analysis results showed that the mass fractions of carbon and hydrogen in the jet fuel products prepared by hydrothermal lipid were higher than those in the jet fuel products prepared by algae powder. Quantum chemistry calculation showed that the shortest bond length (0.080 071 nm) and the highest bond energy (361.074 5 kJ/mol) existed between the carbon atom in carboxyl group and the ortho carbon atom in the palmitic acid. However, Ni?H could elongate the bond length between these two carbon atoms and promote the occurance of decarboxylation reaction.

Key words: microalgae    jet fuel    decarboxylation    quantum chemistry
收稿日期: 2018-04-06 出版日期: 2019-02-21
CLC:  X 511  
作者简介: 程军(1974—),男,教授,博导,从事微藻生物质能转化研究. orcid.org/0000-0003-1104-671X. E-mail: juncheng@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
程军
刘建峰
张曦
张泽
田江磊
周俊虎
岑可法

引用本文:

程军,刘建峰,张曦,张泽,田江磊,周俊虎,岑可法. 微藻水热提取油脂经脱氧断键制航油[J]. 浙江大学学报(工学版), 2019, 53(2): 214-219.

Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.02.002        http://www.zjujournals.com/eng/CN/Y2019/V53/I2/214

主要成分 wB/% 主要成分 wB/%
C16H30O2 28.6 C19H38O2 7.5
C16H32O2 25.8 C20H30O2 5.1
C17H34O2 1.9 C22H42O2 1.4
C17H36O2 7.8 C24H48O2 0.9
酰胺大分子等非生物
柴油成分
21.0
表 1  微藻水热提取油脂的主要成分
图 1  甘油三酯水解成脂肪酸C16的化学反应式
图 2  镍基介孔Y分子筛催化剂的SEM表面形态
图 3  催化剂10%Ni/meso-Y的介孔和微孔孔径分布曲线
图 4  不同温度下藻油脱氧断键制航油的各组分选择性
图 5  不同温度下C8~C17烷烃选择性
图 6  微藻水热油脂和藻粉直接制航油的各组分选择性
样品 转化过程 wB/%
C H N O
藻粉原料 一步法 52.32 7.75 6.78 33.15
藻粉直接水热催化脱氧断键的航油产物 一步法 61.21 6.27 1.87 30.65
微藻水热提取的油脂 两步法 70.21 8.64 3.89 17.26
水热油脂催化脱氧断键的航油产物 两步法 72.68 10.38 3.40 13.54
表 2  藻粉及水热提取油脂制备航油产物的元素组成分析
图 7  十六脂肪酸及脱氧断键产物正十五烷的键长分析
图 8  十六脂肪酸及脱氧断键产物正十五烷的键能分析
1 ZHANG C, HUI X, LIN Y, et al Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120- 138
doi: 10.1016/j.rser.2015.09.056
2 CHISTI Y Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26 (3): 126- 131
doi: 10.1016/j.tibtech.2007.12.002
3 FORTIER M P, ROBERTS G W, STURN B S, et al Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae[J]. Applied Energy, 2014, 122: 73- 82
doi: 10.1016/j.apenergy.2014.01.077
4 ANSARI F A, GUPTA S K, SHRIWASTAV A, et al Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass[J]. Environmental Science and Pollution Research International, 2017, 24 (18): 15299- 15307
doi: 10.1007/s11356-017-9040-3
5 ZHOU D, QIAO B Q, LI G, et al Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions[J]. Bioresource Technology, 2017, 238: 609- 615
doi: 10.1016/j.biortech.2017.04.097
6 YANG C Y, LI R, CUI C, et al Catalytic hydroprocessing of microalgae-derived biofuels: a review[J]. Green Chemistry, 2016, 18 (13): 3684- 3699
7 XING S Y, LV P M, WANG J Y, et al One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways[J]. Physical Chemistry Chemical Physics, 2017, 19 (4): 2961- 2973
doi: 10.1039/C6CP06327F
8 MANTE O D, AGBLEVOR F A, OYAMA S T, et al Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y zeolite in two reactor configurations[J]. Fuel, 2014, 117: 649- 659
doi: 10.1016/j.fuel.2013.09.034
9 CHRISTENSEN C H, JOHANNSEN K, TOERNQVIST E, et al Mesoporous zeolite single crystal catalysts: diffusion and catalysis in hierarchical zeolites[J]. Catalysis Today, 2007, 128: 117- 122
doi: 10.1016/j.cattod.2007.06.082
10 CHRISTENSEN C H, JOHANNSEN K, SCHMIDT I, et al Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials[J]. Journal of the American Chemical Society, 2003, 125: 13370- 13371
doi: 10.1021/ja037063c
11 JIANG Y, FU Y, LIU L, et al Mechanismof palladium-catalyzed decarboxylative cross-coupling between cyanoacetate salts and aryl halides[J]. Science China Chemistry, 2012, 42 (10): 1493- 1493
12 PATON R S, MASERAS F Gold(I)-catalyzed intermolecular hydroalkoxylation of allenes: a DFT study[J]. Organic Letters, 2009, 11 (11): 2237- 2240
doi: 10.1021/ol9004646
13 SHENG J, VANNELA R, RITTMANNN B E, et al Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803[J]. Bioresource Technology, 2011, 102 (2): 1697- 1703
doi: 10.1016/j.biortech.2010.08.007
14 ZANUTTINI M S, PERALTA M A, QUERINI C A, et al Deoxygenation of m-cresol: deactivation and regeneration of Pt/γ-Al2O3 catalysts [J]. Industrial and Engineering Chemistry Research, 2015, 54 (18): 4929- 4939
doi: 10.1021/acs.iecr.5b00305
[1] 罗龙皂, 邵瑜, 田光明. 基于微藻培养的养猪废水氨氮吹脱预处理[J]. 浙江大学学报(工学版), 2017, 51(10): 2055-2060.
[2] 王刚, 郑海峰, 尹红, 袁慎峰, 陈志荣. 1-氯-1,1-二氟乙烷裂解制备偏氟乙烯[J]. 浙江大学学报(工学版), 2015, 49(9): 1812-1816.
[3] 程军,庄良,黄云, 孙晶,周俊虎,岑可法. 平板式微藻光反应器的流场优化及闪光效应[J]. J4, 2013, 47(11): 1958-1963.
[4] 刘冰辉, 陈志荣, 尹红, 袁慎峰. 异丁烯齐聚反应研究[J]. J4, 2013, 47(1): 188-192.
[5] 温正城 周俊虎 王智化 岑可法. 碱金属对煤焦异相还原NO的催化机理:量子化学研究[J]. J4, 2008, 42(8): 1452-1457.