Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (1): 91-101    DOI: 10.3785/j.issn.1008-973X.2020.01.011
土木工程、交通工程     
既有单桩在邻近基坑开挖下的水平向响应简化分析
程康1,2,3(),徐日庆1,2,*(),林存刚4,5,段诺3,6,冯苏阳1,2,梁荣柱3
1. 浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
2. 浙江大学 浙江省城市地下空间开发工程技术研究中心,浙江 杭州 310058
3. 中国地质大学 岩土钻掘与防护教育部工程研究中心,湖北 武汉 430074
4. 挪威岩土工程研究所,挪威 奥斯陆 0806
5. 同济大学 地下建筑与工程系,上海 200092
6. 浙江理工大学 建筑工程学院,浙江 杭州 310018
Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation
Kang CHENG1,2,3(),Ri-qing XU1,2,*(),Cun-gang LIN4,5,Nuo DUAN3,6,Su-yang FENG1,2,Rong-zhu LIANG3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Development of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
3. Engineering Research Center of Rock and Soil Drilling and Excavation and Protection of Ministry of Education, China University of Geosciences, Wuhan 430074, China
4. Norwegian Geotechnical Institute, Oslo 0806, Norway
5. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
6. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(1892 KB)   HTML
摘要:

为了探究既有单桩在邻近基坑开挖作用下的水平向响应规律,提出基于虚拟镜像技术的基坑开挖引起邻近单桩水平向响应解析解. 发挥基坑围护结构变形易于实测的优势,借鉴虚拟镜像技术,考虑土体位移的实际情况,修正土体的等量径向移动模式,推导出土体非等量径向移动模式下基坑开挖引起的坑外土体水平位移场. 基于Pasternak双参数地基,引入修正地基反力模量以考虑埋深效应,利用两阶段法,将土体水平自由位移场视为外荷载施加于邻近单桩,建立在邻近基坑开挖扰动下既有单桩的水平向位移控制方程. 与三维有限元数值模型、既有理论解及已发表案例的工程实测数据的对比,验证该方法的正确性及适用性. 参数分析表明:提高地基反力系数和单桩抗弯刚度有助于减小单桩最大水平位移;当桩与基坑间距较远时,单桩最大水平位移几乎不再受自身抗弯刚度的影响.

关键词: 虚拟镜像技术土体径向移动非等量性两阶段法地基反力模量    
Abstract:

A new simplified analytic solution considering the actual state of ground displacement was proposed based on the virtual mirror technology in order to estimate the response of the existing single pile due to adjacent basement excavation. The virtual mirror technology was used, and the measured deformation of the basement maintenance structures provided easily by the in-situ monitoring technique was utilized. The analytic solution of the greenfield ground movement was developed based on the non-equivalence of the radial movement of the ground. Then the greenfield ground movement was imposed on the pile with the two-stage method by introducing the modified foundation reaction modulus to consider the depth effect of ground. The control differential equation of horizontal displacement of the pile based on Pasternak foundation was established. The feasibility and effectiveness of the proposed method was verified by comparison with three-dimensional finite element method analysis and the existed theoretical solution as well as field measured data. The parametric analysis show that increasing the coefficient of subgrade reaction and the bending stiffness of the pile can decrease the maximum horizontal displacement of the pile. When the pile is far from the foundation pit, the maximum horizontal displacement is essentially immune from the bending stiffness of the pile.

Key words: virtual mirror technology    radial movement of ground    non equivalence    two-stage method    foundation reaction modulus
收稿日期: 2019-01-16 出版日期: 2020-01-05
CLC:  TU 375  
基金资助: 国家自然科学基金资助项目(41702313,41807262);浙江省重点研发计划资助项目(2018C03G2010707);岩土钻掘与防护教育部工程研究中心开放基金资助项目(201706)
通讯作者: 徐日庆     E-mail: chengkang@zju.edu.cn;xurq@zju.edu.cn
作者简介: 程康(1994—),男,博士生,从事土与结构相互作用的研究. orcid.org/0000-0001-6518-8866. E-mail: chengkang@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
程康
徐日庆
林存刚
段诺
冯苏阳
梁荣柱

引用本文:

程康,徐日庆,林存刚,段诺,冯苏阳,梁荣柱. 既有单桩在邻近基坑开挖下的水平向响应简化分析[J]. 浙江大学学报(工学版), 2020, 54(1): 91-101.

Kang CHENG,Ri-qing XU,Cun-gang LIN,Nuo DUAN,Su-yang FENG,Rong-zhu LIANG. Simplified analysis method for evaluating horizontal deformation of single pile due to adjacent foundation pit excavation. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 91-101.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.01.011        http://www.zjujournals.com/eng/CN/Y2020/V54/I1/91

图 1  边界土层等量径向移动模型[9]
图 2  边界土层非等量径向移动模型
图 3  非等量径向模式下土层位移计算模型
图 4  Cerrutti 解示意图
图 5  邻近桩–土相互作用模型
图 6  三维有限元模型与网格
土层 $E_{50}^{{\rm{ref}}}/{\rm{MPa} }$ $E_{\rm{oed}}^{\rm{ref} }/{\rm{MPa} }$ $E_{ {\rm{ur} } }^{\rm{ref}}/{\rm{MPa} }$ $G_0^{\rm{ref}}/{\rm{MPa} }$ γ0.7 Rf c′/kPa φ′/(°) t/m
粉质黏土 8 8 32 80 0.000 1 0.75 28 22 50
表 1  土层的物理力学参数
图 7  单桩水平位移对比曲线
图 8  单桩在邻近基坑开挖下的计算模型及参数
图 9  单桩水平位移对比曲线
图 10  单桩弯矩对比曲线
图 11  单桩水平位移对比曲线
图 12  单桩弯矩对比曲线
图 13  桩-基坑距离和地基反力系数对单桩最大水平位移的影响
图 14  桩-基坑距离和单桩抗弯刚度对单桩最大水平位移的影响
1 FINNO R J, LAWRENCE S A, ALLAWH N F, et al Analysis of performance of pile groups adjacent to deep excavation[J]. Journal of Geotechnical Engineering, 1991, 117 (6): 934- 955
doi: 10.1061/(ASCE)0733-9410(1991)117:6(934)
2 KOK S T, HUAT B B K, NOORZAEI J, et al A case study of passive piles failure in open excavation[J]. The Journal of the Deep Foundations Institute, 2009, 3 (2): 49- 56
doi: 10.1179/dfi.2009.011
3 ONG D E L, LEUNG C F, CHOW Y K Behavior of pile groups subject to excavation-induced soil movement in very soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135 (10): 1462- 1474
doi: 10.1061/(ASCE)GT.1943-5606.0000095
4 LEUNG C F, ONG D E L, CHOW Y K Pile behaviour due to excavation-induced soil movement in clay. Ⅱ: collapsed wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (1): 45- 53
doi: 10.1061/(ASCE)1090-0241(2006)132:1(45)
5 ONG D E L, LEUNG C F, CHOW Y K Pile behavior due to excavation-induced soil movement in clay. I: stable wall[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (1): 36- 44
doi: 10.1061/(ASCE)1090-0241(2006)132:1(36)
6 GUO W D. A simplified approach for piles due to soil movement [C]//The 12th Pan-American Conference on Soil Mechanics and Geotechnical Engineering. Cambridge: Verlag Gluckauf GMBH, 2003: 2215-2220.
7 MROUEH H, SHAHROUR I Three‐dimensional finite element analysis of the interaction between tunneling and pile foundations[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 26 (3): 217- 230
8 ZHANG R, ZHENG J, PU H, et al Analysis of excavation-induced responses of loaded pile foundations considering unloading effect[J]. Tunneling and Underground Space Technology, 2011, 26 (2): 320- 335
doi: 10.1016/j.tust.2010.11.003
9 SAGASETA C Analysis of undrained soil deformation due to ground loss[J]. Géotechnique, 1987, 37 (3): 301- 320
doi: 10.1680/geot.1987.37.3.301
10 XU K J, POULOS H G General elastic analysis of piles and pile groups[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2000, 24 (15): 1109- 1138
doi: 10.1002/1096-9853(20001225)24:15<1109::AID-NAG72>3.0.CO;2-N
11 张爱军, 莫海鸿, 李爱国, 等 基坑开挖对邻近单桩影响的两阶段分析方法[J]. 岩石力学与工程学报, 2013, 32 (Suppl.1): 2746- 2750
ZHANG Ai-jun, MO Hai-hong, LI Ai-guo, et al Two-stage analysis method for behavior of adjacent piles due to foundation pit excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32 (Suppl.1): 2746- 2750
12 杜金龙, 杨敏 基坑开挖与邻近单桩相互作用的弹塑性解[J]. 岩土工程学报, 2008, 30 (8): 1121- 1125
DU Jin-long, YANG Min Elastoplastic solution for excavation-pile interaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30 (8): 1121- 1125
doi: 10.3321/j.issn:1000-4548.2008.08.003
13 张治国, 赵其华, 徐晨, 等 基于影像源法的基坑开挖对邻近单桩影响简化分析[J]. 岩土力学, 2016, 37 (7): 2011- 2020
ZHANG Zhi-guo, ZHAO Qi-hua, XU Chen, et al Simplified analysis of adjacent single-pile response subjected to foundation pit excavation based on virtual image technique[J]. Rock and Soil Mechanics, 2016, 37 (7): 2011- 2020
14 梁荣柱, 夏唐代, 林存刚, 等 盾构推进引起地表变形及深层土体水平位移分析[J]. 岩石力学与工程学报, 2015, 34 (3): 583- 593
LIANG Rong-zhu, XIA Tang-dai, LIN Cun-gang, et al Analysis of ground surface displacement and horizontal movement of deep soils induced by shield advancing[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 583- 593
15 林存刚. 盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究 [D]. 杭州: 浙江大学, 2014.
LIN Cun-gang. Research on shield tunneling-induced ground surface heave and Subsidence and behavior of underwater shield-driven tunnels subject to tidal bores [D]. Hangzhou: Zhejiang University, 2014.
16 林存刚, 夏唐代, 梁荣柱, 等 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014, 36 (8): 1438- 1446
LIN Cun-gang, XIA Tang-dai, LIANG Rong-zhu, et al Estimation of shield tunneling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (8): 1438- 1446
doi: 10.11779/CJGE201408009
17 张陈蓉, 黄茂松 基坑开挖引起的邻近建筑物单桩变形受力响应[J]. 岩土工程学报, 2012, 34 (Suppl.1): 564- 571
ZHANG Chen-rong, HUANG Mao-song Behavior of pile foundation due to excavation-induced lateral soil movement[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 564- 571
18 张治国, 徐晨, 宫剑飞 隧道开挖对邻近单桩变形及承载能力影响的弹塑性解答[J]. 岩石力学与工程学报, 2017, 36 (1): 208- 222
ZHANG Zhi-guo, XU Chen, GONG Jian-fei, et al An elasto-plastic solution of pile deflection and pile load capacity due to adjacent tunneling[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (1): 208- 222
19 俞剑, 张陈蓉, 黄茂松 被动状态下地埋管线的地基模量[J]. 岩石力学与工程学报, 2012, 31 (1): 123- 132
YU Jian, ZHANG Chen-rong, HUANG Mao-song The subgrade modulus of underground pipelines subjected to soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (1): 123- 132
doi: 10.3969/j.issn.1000-6915.2012.01.015
20 KACHANOV M, SHAFIRO B, TSUKROV I. Handbook of elasticity solutions [M]. Dordrecht: Kluwer, 2003.
21 KERR A D On the determination of foundation model parameters[J]. Journal of Geotechnical Engineering, 1985, 111 (11): 1334- 1340
doi: 10.1061/(ASCE)0733-9410(1985)111:11(1334)
22 VESIC A B Bending of beam resting on isotropic elastic solid[J]. Journal of Engineering Mechanics Division, ASCE, 1961, 87 (2): 35- 53
23 梁发云, 李彦初, 黄茂松 基于Pasternak双参数地基模型水平桩简化分析方法[J]. 岩土工程学报, 2013, 35 (Suppl.1): 300- 304
LIANG Fa-yun, LI Yan-chu, HUANG Mao-song Simplified method for laterally loaded piles based on Pasternak double-parameter spring model for foundations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (Suppl.1): 300- 304
[1] 宋鑫,樊玮洁,毛江鸿,金伟良. 基于多级电迁的混凝土内氯离子动态控制效果[J]. 浙江大学学报(工学版), 2021, 55(3): 511-518.
[2] 应宏伟,程康,俞建霖,徐日庆,裘志坚,詹晓波,秦建设,楼春晖. 考虑地基变形连续的基坑开挖诱发邻近盾构隧道位移预测[J]. 浙江大学学报(工学版), 2021, 55(2): 318-329.
[3] 孙晓燕,唐归,王海龙,汪群,张治成. 3D打印路径对混凝土拱桥结构力学性能的影响[J]. 浙江大学学报(工学版), 2020, 54(11): 2085-2091.
[4] 范兴朗,谷圣杰,江佳斐,吴熙. FRP筋混凝土板冲切承载力计算方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1058-1067.
[5] 程康,徐日庆,林存刚,梁荣柱,单华峰,赵明. 挡墙任意变位模式诱发周围土体水平位移的简化算法[J]. 浙江大学学报(工学版), 2020, 54(5): 899-908.
[6] 王海龙,吴远建,凌佳燕,孙晓燕. 锈蚀不锈钢筋与混凝土黏结性能退化[J]. 浙江大学学报(工学版), 2020, 54(5): 843-850.
[7] 夏晋,甘润立,方言,赵羽习,金伟良. 装配式结构套筒灌浆连接的混凝土结合界面直剪性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(3): 491-498.
[8] 金南国,何家豪,付传清,金贤玉. 钢筋加速非均匀锈蚀试验方法和锈蚀形态研究[J]. 浙江大学学报(工学版), 2020, 54(3): 483-490.
[9] 龙江兴,金伟良,张军,毛江鸿,崔磊. 电化学修复后钢筋疲劳性能试验研究[J]. 浙江大学学报(工学版), 2020, 54(1): 64-72.
[10] 元斐斌,金伟良,毛江鸿,王金权,樊玮洁,夏晋. 基于双向电迁移的开裂混凝土除氯阻锈效果[J]. 浙江大学学报(工学版), 2019, 53(12): 2317-2324.
[11] 罗斌,黄炜,马相,李斌,周文彩,任杉杉. 采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能[J]. 浙江大学学报(工学版), 2019, 53(11): 2185-2196.
[12] 尹世平, 李耀, 杨扬, 叶桃. 纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J]. 浙江大学学报(工学版), 2017, 51(5): 904-913.
[13] 王强, 金凌志, 曹霞, 吕海波. 活性粉末混凝土梁抗剪性能试验研究[J]. 浙江大学学报(工学版), 2017, 51(5): 922-930.
[14] 项贻强, 何超超, 邱政. 体外预应力钢-混组合梁长期滑移计算[J]. 浙江大学学报(工学版), 2017, 51(4): 739-744.
[15] 金伟良, 周峥栋, 张军, 毛江鸿, 崔磊, 潘崇根. 基于动态压磁的锈蚀钢筋疲劳特性的试验研究[J]. 浙江大学学报(工学版), 2017, 51(2): 225-230.