Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (5): 539-550    DOI: 10.3785/j.issn.1008-9497.2023.05.004
数学与计算机科学     
具有合作狩猎的食物链模型的Hopf分支
韩婉琴(),石垚(),包雄雄
长安大学 理学院,陕西 西安 710064
Hopf bifurcation of a food chain model with cooperative hunting
Wanqin HAN(),Yao SHI(),Xiongxiong BAO
College of Science,Chang'an University,Xi 'an 710064,China
 全文: PDF(3753 KB)   HTML( 1 )
摘要:

为研究捕食者间合作行为对食物链系统动力学行为的影响,在原有合作捕食模型基础上引入顶层捕食者(仅以捕食者种群为食),建立了具有合作狩猎的食物链模型。运用线性化方法讨论了平衡点的局部稳定性,并通过构造合适的Lyapunov函数,给出了系统全局稳定的充分条件。利用中心流形约简定理导出了分支周期解稳定性的显式公式,并通过数值模拟验证了理论分析结果。结果显示,当捕食者间无合作时,正平衡点为稳定焦点,随着合作捕食参数α的增大,系统出现稳定的极限环且随α的增大不断胀大。说明如果捕食者种群密度过大,系统将产生持续的周期振荡,即食饵、中级捕食者、顶层捕食者要么以周期振荡的形式共存,要么种群数最终趋于稳定。因此,合作狩猎更有利于维护生态平衡。

关键词: 食物链合作捕食稳定性Hopf分支数值模拟    
Abstract:

In order to study the impact of cooperative behaviors between predators on the dynamic behavior of the food chain system, a top-level predator (which only feeds on the predator population) on the basis of the original cooperative hunting model is introduced, and a food chain model with cooperative hunting is established. The local stability of the equilibrium point is discussed by using the linearization method. By establishing an appropriate Lyapunov function, a sufficient condition for the global stability of the system at the equilibrium point is given. In addition, by using the central manifold reduction theorem, the explicit formulas of the branch periodic solution is studied. Numerical simulations are conducted to verify our theoretical analysis. The results show that when there is no cooperative relationship between predators, the positive equilibrium point is stable. With the increase of cooperative predation parameter α, the system will have a stable limit cycle, and the limit cycle will continue to expand following the increase of cooperative predation parameter α. Moreover, if the predator population density is too large, the system will produce continuous periodic oscillation, that is, the three species i.e. diet, mid-level predator, top-level predator, either coexist in the form of periodic oscillation, or the number of species eventually tends to be stable. Therefore, cooperative hunting is more conducive to maintaining ecological balance.

Key words: food chain    cooperative hunting    stability    Hopf bifurcation    numerical simulation
收稿日期: 2023-02-15 出版日期: 2023-09-16
CLC:  O 175.26  
基金资助: 国家自然科学基金资助项目(12201067);陕西省自然科学基础研究计划项目(2021JQ-217);中央高校基本科研业务费专项资金资助项目(300102122114)
通讯作者: 石垚     E-mail: hwq190104@126.com;shiyao@chd.edu.cn
作者简介: 韩婉琴(1999—),ORCID:https://orcid.org/0009-0009-4805-7958,女,硕士研究生,主要从事微分方程动力学及应用研究,E-mail:hwq190104@126.com.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
韩婉琴
石垚
包雄雄

引用本文:

韩婉琴, 石垚, 包雄雄. 具有合作狩猎的食物链模型的Hopf分支[J]. 浙江大学学报(理学版), 2023, 50(5): 539-550.

Wanqin HAN, Yao SHI, Xiongxiong BAO. Hopf bifurcation of a food chain model with cooperative hunting. Journal of Zhejiang University (Science Edition), 2023, 50(5): 539-550.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.05.004        https://www.zjujournals.com/sci/CN/Y2023/V50/I5/539

参数取值吸引子对应图序号
k=0.5,σ=0.01,m1=0.01,m2=0.3,α=10E0图1(a)
k=0.5,σ=6,m1=0.6,m2=0.3,α=10Ek图1(b)
k=0.5,σ=0.03,m1=0.05,m2=0,α=0.5E1*图1(c)
k=0.5,σ=1.5,m1=0.6,m2=0,α=3Ei*(i=2,3)图1(d)
k=0.5,σ=1,m1=0.1,m2=0.1,α=1.2E?图1(e)
表1  公共参数及取值
图1  灭绝平衡点、边界平衡点、内部平衡点及共存平衡点的存在性
图2  平衡点的稳定性
图3  式(1)的分支图及最大李雅普诺夫指数
图4  合作捕食参数α对式(1)动力学行为的影响
1 HEINSOHN R G, PACKER C. Complex cooperative strategies in group-territorial African lions[J]. Science, 1995, 269(5228): 1260-1262. DOI:10.1126/science.7652573
doi: 10.1126/science.7652573
2 BOESCH C, BOESCH H. Hunting behavior of wild chimpanzees in the Tai National Park[J]. American Journal of Physical Anthropology, 1989, 78(4): 547-573. DOI:10.1002/ajpa.1330780410
doi: 10.1002/ajpa.1330780410
3 CREEL S, CREEL N M. Communal hunting and pack size in African wild dogs Lycaon pictus [J]. Animal Behaviour, 1995, 50(5):1325-1339. DOI:10.1016/0003-3472(95)80048-4
doi: 10.1016/0003-3472(95)80048-4
4 ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419: 13-22. DOI:10. 1016/j.jtbi.2017.02.002
doi: 10. 1016/j.jtbi.2017.02.002
5 ZHANG J, ZHANG W N. Dynamics of a predator-prey model with hunting cooperation and Allee effects in predators[J]. International Journal of Bifurcation and Chaos, 2020, 30(14): 2050199. DOI:10.1142/s0218127420501990
doi: 10.1142/s0218127420501990
6 FU S M, ZHANG H S. Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99: 105807. DOI:10.1016/j.cnsns.2021.105807
doi: 10.1016/j.cnsns.2021.105807
7 LIN Z G, PEDERSEN M. Stability in a diffusive food-chain model with Michaelis-Menten functional response[J]. Nonlinear Analysis: Theory, Methods and Applications, 2004, 57(3): 421-433. DOI:10. 1016/j.na.2004.02.022
doi: 10. 1016/j.na.2004.02.022
8 WEN S, CHEN S H, MEI H H. Positive periodic solution of a more realistic three-species Lotka-Volterra model with delay and density regulation[J]. Chaos, Solitons and Fractals, 2009, 40(5): 2340-2348. DOI:10.1016/j.chaos.2007.10.027
doi: 10.1016/j.chaos.2007.10.027
9 SHEN C X, YOU M S. Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion[J]. Applied Mathematics and Computation, 2010, 217(5): 1825-1830. DOI:10.1016/j.amc.2010.02.037
doi: 10.1016/j.amc.2010.02.037
10 CONG P P, FAN M, ZOU X F. Dynamics of a three-species food chain model with fear effect[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99(2):105809. DOI:10.1016/j.cnsns.2021.105809
doi: 10.1016/j.cnsns.2021.105809
11 PANDAY P, PAL N, SAMANTA S, et al. Stability and bifurcation analysis of a three-species food chain model with fear[J]. International Journal of Bifurcation and Chaos, 2018, 28(1): 1850009. DOI:10.1142/s0218127418500098
doi: 10.1142/s0218127418500098
12 MISRA A K, VERMA M. A mathematical model to study the dynamics of carbon dioxide gas in the atmosphere[J]. Applied Mathematics and Computation, 2013, 219(16): 8595-8609. DOI:10.1016/j.amc.2013.02.058
doi: 10.1016/j.amc.2013.02.058
13 XIAO Y N, CHEN L S. Modeling and analysis of a predator-prey model with disease in the prey[J]. Mathematical Biosciences, 2001, 171(1): 59-82. DOI:10.1016/s0025-5564(01)00049-9
doi: 10.1016/s0025-5564(01)00049-9
14 BURNSIDE W S, PANTON A W. The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms[M]. Dublin: Hodges Figgis, 1892.
15 廖晓昕. 稳定性的理论方法和应用[M]. 武汉:华中科技大学出版社,1999.
LIAO X X. Theoretical Methods and Applications of Stability[M]. Wuhan: Huazhong University of Science and Technology Press, 1999.
16 LASALLE J. The Stability of Dynamical Systems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976.
17 赵叶青,李桂花. 考虑合作狩猎的捕食与被捕食系统理论分析[J]. 黑龙江大学自然科学学报,2019,36(4):431-435. DOI:10.13482/j.issn.1001-7011. 2018.03.206
ZHAO Y Q, LI G H. Theoretical analysis of predator-prey system considering cooperative hunting[J]. Journal of Natural Science of Heilongjiang University, 2019,36(4):431-435. DOI:10.13482/j.issn.1001-7011.2018. 03.206
doi: 10.13482/j.issn.1001-7011.2018. 03.206
18 马知恩,周义仓,李承治. 常微分方程定性与稳定性方法[M]. 2版. 北京:科学出版社,2015.
MA Z E, ZHOU Y C, LI C Z. Methods for Qualitative and Stability of Ordinary Differential Equations[M]. 2nd ed. Beijing: Science Press, 2015.
[1] 石金诚,肖胜中. 多孔介质中一类Boussinesq方程组的连续依赖性[J]. 浙江大学学报(理学版), 2023, 50(4): 409-415.
[2] 李孝武,杨赟瑞,刘凯凯. 一类时滞非局部扩散SVIR模型单稳行波解的稳定性[J]. 浙江大学学报(理学版), 2023, 50(3): 273-286.
[3] 陈芳,郭慧君,宋雨濛,楼辉. 改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2023, 50(2): 174-184.
[4] 焦玉娟. Cartan-Eilenberg VW-Gorenstein复形研究[J]. 浙江大学学报(理学版), 2022, 49(6): 657-661.
[5] 杨芳芳,张子振. 具有混合隔离策略的非线性计算机病毒传播模型的Hopf分岔研究[J]. 浙江大学学报(理学版), 2022, 49(5): 570-579.
[6] 张钰倩,张太雷,侯雯珊,宋学力. 一类具有媒体效应和追踪隔离的SIQR时滞传染病模型[J]. 浙江大学学报(理学版), 2022, 49(2): 159-169.
[7] 石金诚, 李远飞. 多孔介质中的Darcy方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(3): 298-303.
[8] 石金诚, 李远飞. 有界区域内相互作用的Forchheimer-Darcy流体方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(1): 57-63.
[9] 武云霞, 赵丹, 陈莎莎, 张平, 杨岳平. 反渗透淡化水调质稳定性及健康性实验研究[J]. 浙江大学学报(理学版), 2020, 47(1): 101-106.
[10] 张子振, 储煜桂, KUMARISangeeta, RanjitKumar UPADHYAY. 一类具有非线性发生率的无线传感网络蠕虫传播模型的延迟动力学行为[J]. 浙江大学学报(理学版), 2019, 46(2): 172-195.
[11] 岳田, 宋晓秋. 线性斜积半流的一致指数稳定性的若干刻画[J]. 浙江大学学报(理学版), 2018, 45(5): 545-548.
[12] 张勇, 杨雪玲, 舒永录. 一类大气混沌模型的动力学分析及数值仿真[J]. 浙江大学学报(理学版), 2018, 45(1): 18-22.
[13] 张子振, 毕殿杰, 赵涛. 一类具有临时免疫的时滞蠕虫传播模型的Hopf分支[J]. 浙江大学学报(理学版), 2016, 43(3): 279-285.
[14] 岳田, 宋晓秋. 巴拿赫空间上斜演化半流的非一致指数不稳定性的存在条件[J]. 浙江大学学报(理学版), 2016, 43(2): 181-183.
[15] 陈爱苹, 楼 辉. Pt/Al2O3在生物油轻质组分水相重整制氢反应中的稳定性[J]. 浙江大学学报(理学版), 2016, 43(1): 23-28.