Please wait a minute...
浙江大学学报(理学版)  2023, Vol. 50 Issue (2): 174-184    DOI: 10.3785/j.issn.1008-9497.2023.02.007
化学     
改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用
陈芳,郭慧君,宋雨濛,楼辉()
浙江大学 化学系,浙江 杭州 310028
Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil
Fang CHEN,Huijun GUO,Yumeng SONG,Hui LOU()
Department of Chemistry,Zhejiang University,Hangzhou 310028,China
 全文: PDF(5114 KB)   HTML( 3 )
摘要:

将核桃壳等可再生资源转化为能源或化工产品,是双碳目标的指引方向之一。核桃壳炭是核桃壳快速热解制备生物油的固体残渣,由于其低比表面积和较差的孔隙率,难以直接使用。用FeCl3活化剂对核桃壳炭进行改性,并将其与常用的KOH改性做对比,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET方法、拉曼光谱、N2等温吸脱附曲线等系列表征,发现相较核桃壳炭,改性核桃壳炭的石墨化程度有所提高,其中,用FeCl3改性的核桃壳炭的比表面积由1.6 cm2·g-1提高至377 cm2·g-1,孔容由0.004 6 cm3·g-1提高至0.074 cm3·g-1,呈现丰富的海绵状孔结构,且收率(61.2%)高于用KOH改性的核桃壳炭(35.8%)。将用FeCl3改性的核桃壳炭负载的碳化钼催化剂用于玉米油加氢脱氧反应,玉米油转化率和烃类产率分别达89.7%和87.2%,循环8次后,玉米油转化率和烃类收率均无明显下降,具有良好的稳定性。因此用FeCl3改性的核桃壳炭经济、高效和环境友好,有一定的推广应用价值。

关键词: 核桃壳炭FeCl3改性催化活性稳定性    
Abstract:

Converting renewable resources such as walnut shells into energy or chemical products is one of the targets for peak carbon dioxide emission and carbon neutrality. Walnut shell char is a solid byproduct of the rapid pyrolysis of walnut shells to create biological oil. Due to its limited porosity and low specific surface area, it is difficult to be used directly as carbon material. FeCl3 was utilized to activate carbon extracted from walnut shells, whereas KOH was used as a reference. Through SEM, TEM, BET, Raman, N2-adsorption, and other series of characterization, it was found that activation improves the degree of graphitization compared to that without activation. The specific surface area increased from 1.6 cm2·g-1 to 377 cm2·g-1 and the pore volume increased from 0.004 6 cm3·g-1 to 0.074 cm3·g-1 when the FeCl3/WSC mass ratio was 10%. The structure of pores was abundant, and the carbon yield (61.2%) was higher than that by using the KOH activation method (35.8%). As a support for the corn oil hydrodeoxidation reaction, carbon derived from walnut shells was treated with FeCl3 to produce the molybdenum carbide catalyst. The corn oil conversion rate and the yield of hydrocarbon were 89.7% and 87.2%, respectively. After 8 cycles, neither the corn oil conversion rate nor the yield of hydrocarbon decreased, and the catalyst remained stable. This method of modifying FeCl3 has the advantages of cost-effectiveness, high efficiency, and environmental friendliness, as well as the potential for extensive use.

Key words: walnut shell char    activation with FeCl3    catalytic activity    stability
收稿日期: 2021-12-10 出版日期: 2023-03-21
CLC:  O 643  
基金资助: 浙江省基础公益项目(LGC22B050001)
通讯作者: 楼辉     E-mail: hx215@zju.edu.cn
作者简介: 陈芳(1975—),女,ORCID:https://orcid.org/0009-0004-1387-7001,硕士,高级实验师,主要从事催化材料合成及微结构表征研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈芳
郭慧君
宋雨濛
楼辉

引用本文:

陈芳, 郭慧君, 宋雨濛, 楼辉. 改性核桃壳炭负载的碳化钼催化剂的制备及其在玉米油加氢脱氧反应中的应用[J]. 浙江大学学报(理学版), 2023, 50(2): 174-184.

Fang CHEN, Huijun GUO, Yumeng SONG, Hui LOU. Preparation of modified walnut shell char supported Molybdenum carbide catalyst and its application in hydrodeoxidation of corn oil. Journal of Zhejiang University (Science Edition), 2023, 50(2): 174-184.

链接本文:

https://www.zjujournals.com/sci/CN/10.3785/j.issn.1008-9497.2023.02.007        https://www.zjujournals.com/sci/CN/Y2023/V50/I2/174

图1  WSC的扫描电镜图和透射电镜图
图2  WSC的XRD能谱
图3  不同活化方法下WSC的N2等温吸脱附曲线及孔径分布曲线
样品

比表面积/

(m2·g-1

孔容/(cm3·g-1峰位/cm-1aID/IGb元素组成/%c

收率/

%e

DGCHN其他d
WSC-O1.60.004 61 3421 5940.9673.92.90.422.8-
WSC-C7.60.007 11 3411 5940.9476.32.40.420.971.5
WSC-K1 5150.881 3401 5960.8881.21.90.616.335.8
WSC-13770.0741 3421 5960.8177.51.81.119.665.4
WSC-104180.131 3391 5960.7481.01.41.216.461.2
WSC-504270.171 3521 5850.6386.01.21.411.450.7
ACf8830.271 3491 5790.9254.91.50.543.1-
表1  不同活化方法下核桃壳炭的结构参数、元素组成、拉曼光谱数据及收率
催化剂

比表面积/

(m2·g-1

孔容/(cm3·g-1峰位/cm-1ID/IG转化率/%a收率/%b
DG
Mo2C/WSC-12310.0361 3471 5940.7875.167.6
Mo2C/WSC-103050.0921 3431 5950.7189.787.2
Mo2C/WSC-503240.111 3481 5870.6291.188.3
Mo2C/WSC-K7860.311 3421 5940.8668.466.3
Mo2C/AC4100.141 3511 5820.8869.459.1
表2  负载型Mo2C催化剂的结构参数、拉曼光谱数据及对应的反应结果
图4  改性WSC负载的Mo2C催化剂的XRD能谱
图5  Mo2C/WSC-10的XPS能谱
图6  改性WSC负载的Mo2C催化剂的Mo 3d和C 1s的XPS图注 (a)(c)(e)(g)为Mo 3d,(b)(d)(f)(h)为C 1s。
催化剂结合能/eV (原子百分比/%)
Mo2+Mo2+~4+Mo4+Mo4+~6+Mo6+
Mo2C/WSC-1228.29 (11.3)228.68 (18.5)229.42 (22.7)231.17 (10.1)232.41 (37.4)
Mo2C/WSC-10228.38 (17.5)228.69 (16.3)229.38 (25.7)231.19 (16.8)232.41 (23.7)
Mo2C/WSC-50228.42 (21.8)228.70 (14.8)229.28 (23.6)231.20 (18.1)232.41 (21.7)
Mo2C/WSC-K228.17 (10.7)228.70 (12.3)229.40 (23.6)231.19 (18.3)232.39 (35.1)
表3  各催化剂Mo 3d XPS能谱分析结果
催化剂结合能/eV (原子百分比/%)
C—Mo平面内C—C缺键位C—CC—OC=O
Mo2C/WSC-1284.20 (10.3)284.59 (41.4)285.52 (28.5)286.70 (11.5)288.68 (8.3)
Mo2C/WSC-10284.14 (11.3)284.59 (53.2)285.48 (18.6)286.69 (10.1)288.70 (6.8)
Mo2C/WSC-50284.12 (12.4)284.60 (63.7)285.51 (11.5)286.71 (6.5)288.65 (5.9)
Mo2C/WSC-K284.22 (9.1)284.61 (56.3)285.50 (15.8)286.69 (9.6)288.69 (9.2)
表4  各催化剂C 1s XPS能谱分析结果
图7  不同载体负载的Mo2C催化剂的玉米油加氢脱氧反应结果
图8  Mo2C/WSC-10和Mo2C/WSC-K催化剂的循环实验
图9  Mo2C/WSC-10和Mo2C/WSC-K循环使用前后的扫描电镜图
图10  Mo2C/WSC-10和Mo2C/WSC-K循环使用前后的XRD
1 MOHAN D, PITTMAN JR C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3) : 848-889. DOI:10.1021/ef0502397
doi: 10.1021/ef0502397
2 KIM S K, YOON D, LEE S C, et al. Mo2C/Graphene nanocomposite as a hydrodeoxygenation catalyst for the production of diesel range hydrocarbons[J]. ACS Catalysis, 2015, 5(6): 3292-3303. DOI:10.1021/acscatal.5b00335
doi: 10.1021/acscatal.5b00335
3 QIN Y, HE L L, DUAN J Z, et al. Carbon-supported molybdenum-based catalysts for the hydrodeoxygenation of maize oil[J]. ChemCatChem, 2014, 6(9): 2698-2705. DOI:10.1002/cctc. 201402035
doi: 10.1002/cctc. 201402035
4 QIN Y, WANG C, SUN X, et al. Defects on activated carbon determine the dispersion of active components and thus the simultaneous removal efficiency of SO2, NO x and Hg0 [J]. Fuel, 2021, 293(1): 120391-120399. DOI:10.1016/j.fuel.2021. 120391
doi: 10.1016/j.fuel.2021. 120391
5 LU M H, LU F W, ZHU J, et al. Hydrodeoxygenation of methyl stearate as a model compound over Mo2C supported on mesoporous carbon[J]. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115: 251-262. DOI:10.1007/s11144-015-0839-y
doi: 10.1007/s11144-015-0839-y
6 HAN J X, DUAN J Z, CHEN P, et al. Molybdenum carbide-catalyzed conversion of renewable oils into diesel-like hydrocarbons[J]. Advanced Synthesis & Catalysis, 2011, 353(14/15): 2577-2583. DOI:10. 1002/adsc.201100217
doi: 10. 1002/adsc.201100217
7 HUIDOBRO A, PASTOR A C, RODRÍGUEZ-REINOSO F. Preparation of activated carbon cloth from viscous rayon: Part IV chemical activation[J]. Carbon, 2001, 39(3): 389-398. DOI:10.1016/S0008-6223(00)00131-7
doi: 10.1016/S0008-6223(00)00131-7
8 EL-HENDAWY A N A. Surface and adsorptive properties of carbons prepared from biomass[J]. Applied Surface Science, 2005, 252(2): 287-295. DOI:10.1016/j.apsusc.2004.11.092
doi: 10.1016/j.apsusc.2004.11.092
9 OLIVEIRA L C A, PEREIRA E, GUIMARAES I R, et al. Preparation of activated carbons from coffee husks utilizing FeCl3 and ZnCl2 as activating agents[J]. Journal of Hazardous Materials, 2009, 165(1-3): 87-94. DOI:10.1016/j.jhazmat.2008. 09.064
doi: 10.1016/j.jhazmat.2008. 09.064
10 ZHAO C Q, MA J G, LI Z Y, et al. Highly enhanced adsorption performance of tetracycline antibiotics on KOH-activated biochar derived from reed plants[J]. RSC Advances, 2020, 10(9): 5066-5076. DOI:10.1039/c9ra09208k
doi: 10.1039/c9ra09208k
11 WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. DOI:10.1039/C2JM34066F
doi: 10.1039/C2JM34066F
12 GRATUITO M K B, PANYATHANMAPORN T, CHUMNANKLANG R A, et al. Production of activated carbon from coconut shell: Optimization using response surface methodology[J]. Bioresource Technology, 2008, 99(11): 4887-4895. DOI:10. 1016/j.biortech.2007.09.042
doi: 10. 1016/j.biortech.2007.09.042
13 KOWALCZYK Z, SENTEK J, JODZIS S, et al. An alkali-promoted ruthenium catalyst for the synthesis of ammonia, supported on thermally modified active carbon[J]. Catalysis Letters, 1997, 45: 65-72. DOI:10.1023/A:1018970318628
doi: 10.1023/A:1018970318628
14 LIANG C H, WEI Z B, XIN Q, et al. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds[J]. Applied Catalysis A: General, 2001, 28(1/2): 193-201. DOI:10.1016/S0926-860X(00)00713-4
doi: 10.1016/S0926-860X(00)00713-4
15 DING C, WEI W L, SUN H J, et al. Reduced graphene oxide supported chiral Ni particles as magnetically reusable and enantioselective catalyst for asymmetric hydrogenation[J]. Carbon, 2014, 79: 615-622. DOI:10.1016/j.carbon.2014.08.022
doi: 10.1016/j.carbon.2014.08.022
16 OYAMA S T. Introduction to the Chemistry of Transition Metal Carbides and Nitrides[M]. Dordrecht: Springer Netherlands, 1996: 1-27. doi:10.1007/978-94-009-1565-7_1
doi: 10.1007/978-94-009-1565-7_1
17 MA Y F, GUAN G Q, HAO X G, et al. Molybdenum carbide as alternative catalyst for hydrogen production: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 75: 1101-1129. DOI:10.1016/j.rser.2016.11.092
doi: 10.1016/j.rser.2016.11.092
18 LU Q, ZHOU M X, LI W T, et al. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study[J]. Catalysis Today, 2018, 35: 169-179. DOI:10.1016/j.cattod.2017.08.029
doi: 10.1016/j.cattod.2017.08.029
19 JIN Y Z, KIM Y J, GAO C, et al. High temperature annealing effects on carbon spheres and their applications as anode materials in Li-ion secondary battery[J]. Carbon, 2006, 44(4): 724-729. DOI:10.1016/j.carbon.2005.09.018
doi: 10.1016/j.carbon.2005.09.018
20 WILLIAMS P T, REED A R. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste[J]. Biomass and Bioenergy, 2006, 30(2): 144-152. DOI:10.1016/j.biombioe.2005.11.006
doi: 10.1016/j.biombioe.2005.11.006
21 BALAT M. An overview of the properties and applications of biomass pyrolysis oils[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(7): 674-689. DOI:10.1080/15567030903228914
doi: 10.1080/15567030903228914
22 FU P, YI W M, BAI X Y, et al. Effect of temperature on gas composition and char structural features of pyrolyzed agricultural residues[J]. Bioresource Technology, 2011, 102(17): 8211-8219. DOI:10.1016/j.biortech.2011.05.083
doi: 10.1016/j.biortech.2011.05.083
23 ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology, 2013, 128: 593-597. DOI:10.1016/j.biortech.2012.10.150
doi: 10.1016/j.biortech.2012.10.150
24 CHENG X, WANG B. Influence of organic composition of biomass waste on biochar yield, calorific value, and specific surface area[J]. Journal of Renewable and Sustainable Energy, 2018, 10(1): 013109. DOI:10.1063/1.5009093
doi: 10.1063/1.5009093
25 SHARMA R K, WOOTEN J B, BALIGA V L, et al. Characterization of chars from pyrolysis of lignin[J]. Fuel, 2004, 83(11/12): 1469-1482. DOI:10.1016/j.fuel.2003.11.015
doi: 10.1016/j.fuel.2003.11.015
26 OTOWA T, TANIBATA R, ITOH M. Production and adsorption characteristics of MAXSORB: High-surface-area active carbon[J]. Gas Separation & Purification, 1993, 7(4): 241-245. DOI:10.1016/0950-4214(93)80024-Q
doi: 10.1016/0950-4214(93)80024-Q
27 BAKLANOVA O N, VASILEVICH A V, LAVRENOV A V, et al. Molybdenum carbide synthesized by mechanical activation an inert medium[J]. Journal of Alloys and Compounds, 2017, 698: 1018-1027. DOI:10.1016/j.jallcom.2016.12.186
doi: 10.1016/j.jallcom.2016.12.186
28 LIANG C H, YING P L, LI CAN. Nanostructured β-Mo2C prepared by carbothermal hydrogen reduction on ultrahigh surface area carbon material[J]. Chemistry of Materials, 2002, 14(7): 3148-3151. DOI:10.1021/cm020202p
doi: 10.1021/cm020202p
29 MORDENTI D, BRODZKI D, DJEGA-MARIADASSOU G. New synthesis of Mo2C 14 nm in average size supported on a high specific surface area carbon material[J]. Journal of Solid State Chemistry, 1998, 141(1): 114-120. DOI:10.1006/jssc.1998.7925
doi: 10.1006/jssc.1998.7925
30 SHEN Y F. Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications[J]. Journal of Materials Chemistry A, 2015, 3(25): 13114-13188. DOI:10. 1039/C5TA01228G
doi: 10. 1039/C5TA01228G
31 WANG R H, YANG J, SHI K Y, et al. Single-step pyrolytic preparation of Mo2C/graphitic carbon nanocomposite as catalyst carrier for the direct liquid-feed fuel cells[J]. Rsc Advances, 2013, 3(14): 4771-4777. DOI:10.1039/C3RA23391J
doi: 10.1039/C3RA23391J
32 BARTHOS R, SZÉCHENYI A, SOLYMOSI F. Efficient H2 production from ethanol over Mo2C/C nanotube catalyst[J]. Catalysis Letters, 2008, 120: 161-165. DOI:10.1007/s10562-007-9265-8
doi: 10.1007/s10562-007-9265-8
33 IZHAR S, KANESUGI H, TOMINAGA H, et al. Cobalt molybdenum carbides: Surface properties and reactivity for methane decomposition[J]. Applied Catalysis A: General, 2007, 317(1): 82-90. DOI:10.1016/j.apcata.2006.10.013
doi: 10.1016/j.apcata.2006.10.013
34 LAUSCHE A C, SCHAIDLE J A, THOMPSON L T, et al. Understanding the effects of sulfur on Mo2C and Pt/Mo2C catalysts: Methanol steam reforming[J]. Applied Catalysis A: General, 2011, 401(1/2): 29-36. DOI:10.1016/j.apcata.2011.04.037
doi: 10.1016/j.apcata.2011.04.037
35 SHIMODA M, HIRATA T, YAGISAWA K, et al. Deconvolution of Mo 3D X-ray photoemission spectra γ-Mo4O11: Agreement with prediction from bond length-bond strength relationships[J]. Journal of Materials Science Letters, 1989, 8: 1089-1091. DOI:10.1007/BF01730497
doi: 10.1007/BF01730497
36 WEI Z B Z, GRANGE P, DELMON B. XPS and XRD studies of fresh and sulfided Mo2N[J]. Applied Surface Science, 1998, 135(1-4): 107-114. DOI:10. 1016/S0169-4332(98)00267-0
doi: 10. 1016/S0169-4332(98)00267-0
37 GUO H J, SONG Y M, CHEN P, et al. Effects of graphitization of carbon nanospheres on hydrodeoxygenation activity of molybdenum carbide[J]. Catalysis Science & Technology, 2018, 8(16): 4199-4208. DOI:10.1039/C8CY01136B
doi: 10.1039/C8CY01136B
38 WANG Y Y, LING L L, JIANG H. Selective hydrogenation of lignin to produce chemical commodities by using a biochar supported Ni-Mo2C catalyst obtained from biomass[J]. Green Chemistry, 2016, 14: 4032-4041. DOI:10.1039/C6GC00247A
doi: 10.1039/C6GC00247A
[1] 韩婉琴, 石垚, 包雄雄. 具有合作狩猎的食物链模型的Hopf分支[J]. 浙江大学学报(理学版), 2023, 50(5): 539-550.
[2] 石金诚, 肖胜中. 多孔介质中一类Boussinesq方程组的连续依赖性[J]. 浙江大学学报(理学版), 2023, 50(4): 409-415.
[3] 李孝武,杨赟瑞,刘凯凯. 一类时滞非局部扩散SVIR模型单稳行波解的稳定性[J]. 浙江大学学报(理学版), 2023, 50(3): 273-286.
[4] 焦玉娟. Cartan-Eilenberg VW-Gorenstein复形研究[J]. 浙江大学学报(理学版), 2022, 49(6): 657-661.
[5] 张钰倩,张太雷,侯雯珊,宋学力. 一类具有媒体效应和追踪隔离的SIQR时滞传染病模型[J]. 浙江大学学报(理学版), 2022, 49(2): 159-169.
[6] 石金诚, 李远飞. 多孔介质中的Darcy方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(3): 298-303.
[7] 石金诚, 李远飞. 有界区域内相互作用的Forchheimer-Darcy流体方程组解的结构稳定性[J]. 浙江大学学报(理学版), 2021, 48(1): 57-63.
[8] 武云霞, 赵丹, 陈莎莎, 张平, 杨岳平. 反渗透淡化水调质稳定性及健康性实验研究[J]. 浙江大学学报(理学版), 2020, 47(1): 101-106.
[9] 张子振, 储煜桂, KUMARISangeeta, RanjitKumar UPADHYAY. 一类具有非线性发生率的无线传感网络蠕虫传播模型的延迟动力学行为[J]. 浙江大学学报(理学版), 2019, 46(2): 172-195.
[10] 岳田, 宋晓秋. 线性斜积半流的一致指数稳定性的若干刻画[J]. 浙江大学学报(理学版), 2018, 45(5): 545-548.
[11] 张子振, 毕殿杰, 赵涛. 一类具有临时免疫的时滞蠕虫传播模型的Hopf分支[J]. 浙江大学学报(理学版), 2016, 43(3): 279-285.
[12] 岳田, 宋晓秋. 巴拿赫空间上斜演化半流的非一致指数不稳定性的存在条件[J]. 浙江大学学报(理学版), 2016, 43(2): 181-183.
[13] 陈爱苹, 楼 辉. Pt/Al2O3在生物油轻质组分水相重整制氢反应中的稳定性[J]. 浙江大学学报(理学版), 2016, 43(1): 23-28.
[14] 张子振. 一类时滞计算机网络病毒模型的动力学行为[J]. 浙江大学学报(理学版), 2015, 42(6): 677-686.
[15] 程 波, 冯玉宇, 胥建卫, 王国栋. 基于合作水解模型的微管动态不稳定性研究[J]. 浙江大学学报(理学版), 2015, 42(6): 745-748.