Please wait a minute...
Chinese Journal of Engineering Design  2024, Vol. 31 Issue (5): 557-564    DOI: 10.3785/j.issn.1006-754X.2024.04.124
Theory and Method of Mechanical Design     
Remanufacturability evaluation of piston pump based on remaining life
Shunhai XU1(),Xiaolei ZHOU1,Guofang GONG2,Haoceng HONG2,Peng ZHANG1(),Shang LIU1,Yalei FAN1
1.China Railway Engineering Equipment Group Co. , Ltd. , Zhengzhou 450016, China
2.State Key Laboratory of Fundamental Components of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(3440KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to quantitatively evaluate the remanufacturability of piston pump, the fatigue life was studied with the piston pump as the research object. The rigid-flexible-liquid joint simulation model of the piston pump was established, and the effects of rotational speed and load pressure on the maximum stress and fatigue life of the piston pump were studied. The results showed that the maximum stress on the piston pump increased exponentially with the rotational speed increasing, while the fatigue life of the piston pump decreased exponentially. With the increase of load pressure, the maximum stress increased linearly, and the fatigue life decreased logarithmically. Based on the fatigue life analysis of the piston pump, a technical evaluation system with remaining life and parts processability as indexes was established, and economic and environmental indexes were comprehensively considered. A quantitative evaluation model and method for the remanufacturability of the piston pump were proposed, and engineering application analysis was carried out to verify the rationality and feasibility of the proposed method.



Key wordspiston pump      simulation analysis      fatigue life      remanufacturability      quantitative evaluation     
Received: 18 March 2024      Published: 30 October 2024
CLC:  TQ 021.1  
Corresponding Authors: Peng ZHANG     E-mail: xushunhai@crectbm.com;zhangpengxing1991@outlook.com
Cite this article:

Shunhai XU,Xiaolei ZHOU,Guofang GONG,Haoceng HONG,Peng ZHANG,Shang LIU,Yalei FAN. Remanufacturability evaluation of piston pump based on remaining life. Chinese Journal of Engineering Design, 2024, 31(5): 557-564.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2024.04.124     OR     https://www.zjujournals.com/gcsjxb/Y2024/V31/I5/557


基于剩余寿命的柱塞泵可再制造性评估

为了实现对柱塞泵可再制造性的定量评估,首先以柱塞泵为研究对象,进行其疲劳寿命研究。建立了柱塞泵刚-柔-液联合仿真模型,研究了在柱塞泵运行过程中转速、负载压力对柱塞最大应力和疲劳寿命的影响规律。结果显示:随着转速提高,柱塞所受到的最大应力呈指数递增,柱塞的疲劳寿命则呈指数递减;随着负载压力的增大,柱塞所受到的最大应力呈线性增大,柱塞的疲劳寿命则呈对数递减。在柱塞泵疲劳寿命分析的基础上,建立了以剩余寿命和零部件可加工性为指标的技术评估体系,并综合考虑了经济和环境指标,提出了柱塞泵可再制造性量化评估模型和方法,并进行了工程应用分析,验证了所提出方法的合理性和可行性。


关键词: 柱塞泵,  仿真分析,  疲劳寿命,  可再制造性,  定量评估 
Fig.1 Block diagram of flow of remanufacturability evaluation of piston pump based on remaining life
Fig.2 Model of piston pump hydraulic system
Fig.3 Change curve of pressure at the piston end
Fig.4 Schematic of conical cylinder block of piston pump
Fig.5 Key components of piston pump
部件材料

密度/

(kg·m-3)

杨氏模量/

MPa

泊松比
缸体45号钢7.85×1032.1×1050.269
柱塞GCr15钢7.83×1032.19×1050.3
滑靴ZQAl9-47.5×1031.1×1050.33
斜盘20CrMnTi7.8×1032.07×1050.25
Table 1 Material parameters of key components of piston pump
部件1部件2约束名称
缸体旋转
柱塞滑靴球铰副
滑靴斜盘平面副
斜盘固定约束
铜套缸体固定约束
铜套柱塞圆柱副
Table 2 Constraint relation between key components of piston pump
Fig.6 Curves of movement velocity of piston
Fig.7 Stress distribution of piston
Fig.8 Number of piston stress cycles
Fig.9 Effect of rotational speed on the maximum stress and fatigue life of piston
Fig.10 Effect of load pressure on the maximum stress and fatigue life of piston
Fig.11 Framework of remanufacturability evaluation of piston pump
一级指标(权重)

二级指标

(权重)

评估方法
技术指标(40%)剩余寿命(50%)仿真分析
零部件可加工性(50%)专家评定
经济指标(40%)成本降低率数据计算
时间节约率数据计算
环境指标(20%)废水减少率(30%)数据统计
废气减少率(10%)数据统计
固体废弃物减少率(60%)数据统计
Table 3 Comprehensive evaluation system for remanufacturability of piston pump
指标较好一般
剩余寿命α11α12α13α14
零部件可加工性α21α22α23α24
Table 4 Expert evaluation result of technical index
λ可再制造性判定结果
0~0.3不适合再制造
0.3~0.6适合再制造
0.6~1.0
Table 5 Criteria for remanufacturability of piston pump
评估项数值
理论寿命/h3 200
已服役时间/h1 500
新柱塞泵购买费用/万元1.5
旧柱塞泵再制造费用/万元0.6
新柱塞泵制造时间/d30
旧柱塞泵再制造时间/d7
废水减少率/%76
废气减少率/%85
固体废弃物减少率/%90
Table 6 Remanufacturability evaluation data of piston pump
指标较好一般
剩余寿命01100
零部件可加工性2630
Table 7 Evaluation result of technical index of remanufacturability of piston pump
[1]   WANG S H, XIANG J W, TANG H S, et al. Minimum entropy deconvolution based on simulation-determined band pass filter to detect faults in axial piston pump bearings[J]. ISA Transactions, 2019, 88: 186-198.
[2]   许睿, 谷立臣. 轴向柱塞泵全局耦合动力学建模[J]. 农业机械学报, 2016, 47(1): 369-376.
XU R, GU L C. Global coupled dynamical modeling of axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 369-376.
[3]   王川, 江文, 叶兰. 液压系统故障诊断技术的研究现状与发展趋势探究[J]. 南方农机, 2019, 50(8): 180.
WANG C, JIANG W, YE L. Research status and development trend of fault diagnosis technology of hydraulic system[J]. China Southern Agricultural Machinery, 2019, 50(8): 180.
[4]   刘纯, 曹华军, 刘飞, 等. 机电产品绿色再制造综合评价模型及应用[J]. 现代制造工程, 2007(11): 1-3, 21.
LIU C, CAO H J, LIU F, et al. Comprehensive assessment model and its application of waste electromechanical products green remanufacturing[J]. Modern Manufacturing Engineering, 2007(11): 1-3, 21.
[5]   袁熙, 李舜酩. 疲劳寿命预测方法的研究现状与发展[J]. 航空制造技术, 2005, 48(12): 80-84.
YUAN X, LI S M. Research status and development of forecast method of fatigue life[J]. Aeronautical Manufacturing Technology, 2005, 48(12): 80-84.
[6]   郭志敏, 戴海曙, 翟江, 等. 基于FMI的轴向柱塞泵分布式联合仿真与动态优化[J]. 工程设计学报, 2023, 30(4): 495-502. doi:10.3785/j.issn.1006-754X.2023.00.058
GUO Z M, DAI H S, ZHAI J, et al. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chinese Journal of Engineering Design, 2023, 30(4): 495-502.
doi: 10.3785/j.issn.1006-754X.2023.00.058
[7]   华亮, 田威, 廖文和, 等. 基于非线性连续疲劳损伤的再制造毛坯剩余寿命评估[J]. 机械工程学报, 2015, 51(21): 132-136. doi:10.3901/jme.2015.21.132
HUA L, TIAN W, LIAO W H, et al. Remaining life evaluation for remanufacturing blanks based on non-linear continuum fatigue damage model[J]. Journal of Mechanical Engineering, 2015, 51(21): 132-136.
doi: 10.3901/jme.2015.21.132
[8]   朱庚尚. 盾构滚刀再制造疲劳剩余寿命评估研究[D]. 徐州: 中国矿业大学, 2021: 1-50.
ZHU G S. Study on evaluation of remanufacturing fatigue residual life of shield hob[D]. Xuzhou: China University of Mining and Technology, 2021: 1-50.
[9]   马硕, 姜兴宇, 杨国哲, 等. 废旧机床主轴剩余寿命评估模型[J]. 机械工程学报, 2021, 57(4): 219-226. doi:10.3901/jme.2021.04.219
MA S, JIANG X Y, YANG G Z, et al. Prediction and evaluation model for the residual life of wasted machine tool spindle[J]. Journal of Mechanical Engineering, 2021, 57(4): 219-226.
doi: 10.3901/jme.2021.04.219
[10]   董丽虹, 徐滨士, 董世运, 等. 金属磁记忆技术用于再制造毛坯寿命评估初探[J]. 中国表面工程, 2010, 23(2): 106-111. doi:10.1080/10589750902795366
DONG L H, XU B, DONG S Y, et al. Progress in life prediction of remanufacturing blanks by using metal magnetic memory testing[J]. China Surface Engineering, 2010, 23(2): 106-111.
doi: 10.1080/10589750902795366
[11]   张小丽, 陈雪峰, 李兵, 等. 机械重大装备寿命预测综述[J]. 机械工程学报, 2011, 47(11): 100-116. doi:10.3901/jme.2011.11.100
ZHANG X L, CHEN X F, LI B, et al. Review of life prediction for mechanical major equipments[J]. Journal of Mechanical Engineering, 2011, 47(11): 100-116.
doi: 10.3901/jme.2011.11.100
[12]   刘赟, 徐滨士, 史佩京, 等. 废旧产品再制造性评估指标[J]. 中国表面工程, 2011, 24(5): 94-99.
LIU Y, XU B S, SHI P J, et al. Assessment indexes of used products remanufacturability[J]. China Surface Engineering, 2011, 24(5): 94-99.
[13]   徐滨士, 张伟, 马世宁, 等. 面向21世纪的绿色再制造[J]. 中国表面工程, 1999, 12(4): 1-4, 49.
XU B S, ZHANG W, MA S N, et al. Green remanufacturing towards the 21st century[J]. China Surface Engineering, 1999, 12(4): 1-4, 49.
[14]   唐宏宾, 杨婧, 唐一. 轴向柱塞泵疲劳损伤分析及寿命预测[J]. 机床与液压, 2023, 51(16): 165-171.
TANG H B, YANG J, TANG Y. Fatigue damage analysis and life prediction of axial piston pump[J]. Machine Tool & Hydraulics, 2023, 51(16): 165-171.
[15]   谢海波,洪昊岑,王柏村,等. 基于多目标遗传算法的斜盘式轴向柱塞泵低脉动结构优化设计[J].工程设计学报, 2024, 2024, 31(2):160-167.
XIE H B, HONG H C, WANG B C, et al. Low pulsation structural optimization design of swashplate axial piston pump based on multi-objective genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(2):160-167.
[16]   张斌, 程国赞, 洪昊岑, 等. 基于SVR的轴向柱塞泵配流盘三角槽结构优化[J]. 吉林大学学报(工学版), 2021, 51(4): 1213-1221.
ZHANG B, CHENG G Z, HONG H C, et al. Structure optimization of triangular groove of valve plate in axial piston pump based on SVR[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1213-1221.
[17]   马吉恩, 徐兵, 杨华勇. 轴向柱塞泵流动特性理论建模与试验分析[J]. 农业机械学报, 2010, 41(1): 188-194.
MA J E, XU B, YANG H Y. Modelling and experiment study on fluid character of axial piston pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 188-194.
[18]   曹壮壮.面向再制造的泥浆泵动力端曲轴剩余寿命预测及可行性分析[D].西安:长安大学,2023:5-30.
CAO Z Z. Remaining life prediction and feasibility analysis of power end crankshaft of mud pump for remanufacturing[D]. Xi'an: Chang'an University,2023: 5-30.
[1] Manman LI,Quanhe YANG,Kaiting XIE,Yuan WANG,Donghui XU,Zhaoguo ZHANG. Design and experimental study of hydraulic system of self-propelled Panax notoginseng combine harvester[J]. Chinese Journal of Engineering Design, 2024, 31(5): 670-680.
[2] Haibo XIE,Haocen HONG,Baicun WANG,WEI JIANG,Huayong YANG. Low pulsation structural optimization design of swashplate axial piston pump based on multi-objective genetic algorithm[J]. Chinese Journal of Engineering Design, 2024, 31(2): 160-167.
[3] Weitao ZHANG,Dongjie ZHAO,Lu WANG,Xinmian BAO,Baosai HUANG. Kinematics analysis and simulation of a flexible picking robot arm[J]. Chinese Journal of Engineering Design, 2024, 31(2): 230-237.
[4] Xinge LI,Hongyu LIAO,Min ZHOU,Mengmeng CHEN,Liangxi XIE. Innovative design and analysis of swinging spraying mechanism of plastering machine[J]. Chinese Journal of Engineering Design, 2024, 31(2): 248-253.
[5] Wenjing ZHI,Guocai LI,Weijuan ZHENG,Chen ZHANG,Dongping LIU,Xiaoyi CAI. Design of civil aircraft cabin door operation panel based on ergonomics[J]. Chinese Journal of Engineering Design, 2024, 31(1): 107-119.
[6] Liyong TIAN,Rui TANG,Ning YU,Hongyue CHEN. Design and application of belt lifting mechanism for replacing idler of belt conveyor[J]. Chinese Journal of Engineering Design, 2023, 30(6): 667-677.
[7] Zhimin GUO,Haishu DAI,Jiang ZHAI,Haocen HONG,Baicun WANG,Haibo XIE,Huayong YANG. Distributed co-simulation and dynamic optimization of axial piston pump based on FMI[J]. Chinese Journal of Engineering Design, 2023, 30(4): 495-502.
[8] Dong ZHANG,Pei YANG,Zhexuan HUANG,Lingyu SUN,Minglu ZHANG. Design and optimization of pendulous magnetic adsorption mechanism for wall-climbing robots[J]. Chinese Journal of Engineering Design, 2023, 30(3): 334-341.
[9] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chinese Journal of Engineering Design, 2023, 30(3): 380-389.
[10] Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation[J]. Chinese Journal of Engineering Design, 2023, 30(1): 102-108.
[11] Zhi-qiang NING,Li-xin WEI,Long QUAN,Mei-qing ZHAO,You-shan GAO. Anti-interference control and parallel tuning method for variable displacement asymmetric axial piston pump[J]. Chinese Journal of Engineering Design, 2022, 29(4): 401-409.
[12] Shao-yu TANG,Jie WU,Hui ZHANG,Bing-bing DENG,Yu-ming HUANG,Hao HUANG. Simulation and experimental research on temperature field of multipole magnetorheological clutch[J]. Chinese Journal of Engineering Design, 2022, 29(4): 484-492.
[13] FAN Xiao-yue, LIU Qi, GUAN Wei, ZHU Yun, CHEN Su-lin, SHEN Bin. Simulation and experimental research on thermal effect of electromagnetic micro hammer peening mechanism[J]. Chinese Journal of Engineering Design, 2022, 29(1): 66-73.
[14] ZHANG Qin, PANG Ye-zhong, WANG Kai. Simulation analysis and experimental research on robot pedaling weeding process[J]. Chinese Journal of Engineering Design, 2021, 28(6): 709-719.
[15] ZHANG Shen-tong. Analysis of landing load of aircraft landing gear based on virtual prototype technology[J]. Chinese Journal of Engineering Design, 2021, 28(6): 758-763.