Please wait a minute...
Chin J Eng Design  2023, Vol. 30 Issue (1): 102-108    DOI: 10.3785/j.issn.1006-754X.2023.00.015
Modeling, Simulation, Analysis and Decision     
Study on fatigue life of shaft with V-notch under dual-frequency excitation
Chun-jian HUA1,2(),Dong-dong LI1,2,Yi JIANG1,2,Jian-feng YU1,2,Ying CHEN3
1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
2.Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, Jiangnan University, Wuxi 214122, China
3.School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
Download: HTML     PDF(4058KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In view of the problem that metal shaft parts are prone to stress concentration and fatigue failure under actual complex working conditions, the variation of fatigue life of shaft with V-notch with notch geometric parameters was studied by using dual-frequency excitation system. Firstly, the excitation frequency control curve to promote the initiation of shaft fatigue crack was proposed. At the same time, the Box-Behnken design method in response surface method was used to carry out the experimental design of three factors and three levels of angle, fillet radius and depth of V-notch; secondly, a multiple regression prediction model of fatigue life was established, and the reliability of the model was evaluated by variance analysis; finally, the influence of the angle, fillet radius and depth of the notch on the fatigue life of the shaft was analyzed by using the response surface and contour map, and the prediction model was applied. The results showed that the error between the predicted and experimental values of fatigue life was within 4.2%, the prediction accuracy was higher, and the prediction model was reliable; the influence of the geometric parameters of the notch on the fatigue life from large to small was the depth, fillet radius, and the angle of notch. The interaction of fillet radius and depth had the most significant impact on the fatigue life of shaft. The research results can provide an important reference for the anti-fatigue design of metal shaft parts.



Key wordsdual-frequency excitation      V-notch      fatigue life      response surface method      prediction model     
Received: 16 July 2022      Published: 06 March 2023
CLC:  TG 111.91  
Cite this article:

Chun-jian HUA,Dong-dong LI,Yi JIANG,Jian-feng YU,Ying CHEN. Study on fatigue life of shaft with V-notch under dual-frequency excitation. Chin J Eng Design, 2023, 30(1): 102-108.

URL:

https://www.zjujournals.com/gcsjxb/10.3785/j.issn.1006-754X.2023.00.015     OR     https://www.zjujournals.com/gcsjxb/Y2023/V30/I1/102


双频激振下带V形缺口轴的疲劳寿命研究

针对金属轴类零件在实际复杂工况下易产生应力集中而发生疲劳破坏的问题,利用双频激振系统,研究带V形缺口轴的疲劳寿命随缺口几何参数的变化规律。首先,提出了促进轴疲劳裂纹萌生的激振频率控制曲线,同时采用响应曲面法中的Box-Behnken设计法对V形缺口的夹角、圆角半径和深度进行三因素三水平的实验设计;其次,建立了疲劳寿命多元回归预测模型,并采用方差分析法对模型进行可靠性评价;最后,利用响应曲面和等高线图分析了缺口的夹角、圆角半径和深度对轴疲劳寿命的影响规律,并进行了预测模型的应用。研究结果表明:疲劳寿命预测值与实测值之间的误差在4.2%以内,预测精度较高,预测模型可靠;缺口几何参数对疲劳寿命从大到小的影响次序是缺口深度、缺口圆角半径、缺口夹角,以圆角半径和深度的交互作用对轴疲劳寿命的影响最为显著。研究结果可为金属轴类零件的抗疲劳设计提供重要参考。


关键词: 双频激振,  V形缺口,  疲劳寿命,  响应曲面法,  预测模型 
Fig.1 Dual-frequency excitation system
Fig.2 Double-frequency excitation model of shaft with V-notch
Fig.3 Schematic of geometric parameters of shaft with V-notch
Fig.4 Excitation frequency control curve
水平因素
θ/(°)r/mmd/mm
-1600.21
0900.32
11200.43
Table 1 Setting of three factors and three levels of fatigue failure experiment
Fig.5 Amplitude history of notch axis
序号θ/(°)r/mmd/mmy/s
11200.2224.2
2900.2313.5
3900.3221.4
4900.4126.2
5600.2221.3
61200.3124.9
7900.3221.2
8600.3316.3
9900.2121.8
10900.4320.1
111200.4227.0
12900.3221.4
13900.3221.2
14600.4226.8
15900.3220.8
16600.3123.4
171200.3317.9
Table 2 Experimental results of fatigue failure of shaft with V-notch
来源平方和自由度均方差Fp
R2=0.994 4, R2adj=0.987 3, Cv=1.88%
预测模型207.61923.07138.9<0.000 1
x14.8114.8128.930.001
x246.56146.56280.370.000 1
x3101.531101.53611.37<0.000 1
x1x21.8211.8210.970.012 9
x1x30.002 510.002 50.015 10.905 8
x2 x31.2111.217.290.030 7
x1215.6115.693.95<0.000 1
x2212.17112.1773.27<0.000 1
x3226.32126.32158.46<0.000 1
残差1.1670.166 1
失拟项0.922 530.307 55.130.074 2
纯误差0.2440.06
总和208.7816
Table 3 Variance analysis results of fatigue life prediction model
Fig.6 Comparison between predicted and experimental values of fatigue life of shaft with V-notch
Fig.7 Influence rule of V-notch geometric parameters on fatigue life
序号θ/(°)r/mmd/mm预测值/s实测值/s实测平均值/s

误差/

%

1900.21.522.022.322.73.1
222.6
323.2
41.821.220.420.43.9
520.0
620.8
72.418.418.618.82.1
819.2
918.6
Table 4 Application scheme and result of fatigue life prediction model
[1]   李泳峄,赵升吨,孙振宇,等.花键轴高效精密批量化生产工艺的合理性探讨[J].锻压技术,2012,37(3):1-6. doi:10.3969/j.issn.1000-3940.2012.03.001
LI Yong-yi, ZHAO Sheng-dun, SUN Zhen-yu, et al. Discussion on the rationality of the efficient and precise mass production process of spline shafts[J]. Forging Technology, 2012, 37(3): 1-6.
doi: 10.3969/j.issn.1000-3940.2012.03.001
[2]   毕艳茹,王志勃,姜亚南.典型轴零件的综合机械性能分析[J].装备制造技术,2013(11):143-144,156. doi:10.3969/j.issn.1672-545X.2013.11.053
BI Yan-ru, WANG Zhi-bo, JIANG Ya-nan. Comprehensive mechanical properties analysis of typical shaft parts[J]. Equipment Manufacturing Technology, 2013(11): 143-144, 156.
doi: 10.3969/j.issn.1672-545X.2013.11.053
[3]   刘龙杰,赵礼辉,史成淼,等.基于响应面法传动直轴疲劳寿命优化[J].机械强度,2022, 44:215-224.
LIU Long-jie, ZHAO Li-hui, SHI Cheng-miao, et al. Fatigue life optimization of transmission straight shaft based on response surface method[J]. Mechanical Strength, 2022, 44(1): 215-224.
[4]   陈伟军,黄德杰,汪峰,等.乘用车轮毂轴颈承载能力研究[J].机电工程,2022,39(5):668-673. doi:10.3969/j.issn.1001-4551.2022.05.014
CHEN Wei-jun, HUANG De-jie, WANG Feng, et al. Research on bearing capacity of pass-enger wheel hub journals[J]. Mechanical and Electrical Engineering, 2022, 39(5): 668-673.
doi: 10.3969/j.issn.1001-4551.2022.05.014
[5]   任皓靖.复合频率激振下轴类构件的断裂行为研究[D].无锡:江南大学,2019:1-7.
REN Hao-jing. Research on fracture behavior of shaft members under compound frequency excitation[D]. Wuxi: Jiangnan University, 2019: 1-7.
[6]   李有堂,李全宝.U形切口中缺口参数对轴类件疲劳寿命的影响[J].甘肃科学学报,2010,22(3):84-87. doi:10.3969/j.issn.1004-0366.2010.03.021
LI You-tang, LI Quan-bao. Influence of notch parameters in U-shaped notches on fatigue life of shaft parts[J]. Gansu Science Journal, 2010, 22(3): 84-87.
doi: 10.3969/j.issn.1004-0366.2010.03.021
[7]   张立军,赵升吨.恒幅载荷下棒料V形槽尖端裂纹起始寿命的估算[J].塑性工程学报,2008(5):73-77.
ZHANG Li-jun, ZHAO Sheng-dun. Estimation of crack initiation life at the tip of bar V-groove under constant amplitude load[J].Chinese Journal of Plastic Engineering, 2008(5): 73-77.
[8]   李德勇,姚卫星.缺口件振动疲劳寿命分析的名义应力法[J].航空学报,2011,32(11): 2036-2041.
LI De-yong, YAO Wei-xing. Nominal stress method for vibration fatigue life analysis of notched parts[J]. Chinese Journal of Aeronautics and Astronautics, 2011, 32(11): 2036-2041.
[9]   赵升吨,任芋见,杨昌群,等.低应力疲劳裂纹可控式精密分离技术[J].塑性工程学报,2020, 27(12):1-8. doi:10.3969/j.issn.1007-2012.2020.12.001
ZHAO Sheng-tun, REN Yu-jian, YANG Chang-qun, et al. Controllable precision separation technology for low stress fatigue cracks[J]. Chinese Journal of Plastic Engineering, 2020, 27(12): 1-8.
doi: 10.3969/j.issn.1007-2012.2020.12.001
[10]   ZHANG Li-jun, ZHANG De-pei, WANG Han-xiang, et al. Research on variable frequency-loading curve in precision cropping system with high-speed and centrifugal action[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(5/8): 2969-2978.
[11]   胡海涛,李玉龙,索涛,等.2024铝合金振动疲劳特性及断口分析[J].航空材料学报,2013,33(4):78-83.
HU Hai-tao, LI Yu-long, SUO Tao, et al. 2024 aluminum alloy vibration fatigue characteristics and fracture analysis [J]. Journal of Aeronautical Materials, 2013, 33(4): 78-83.
[12]   化春键,王超凡,陆云健.基于高低频复合振动的金属管材断裂行为研究[J].工程设计学报,2019,26(2):223-229. doi:10.3785/j.issn.1006-754X.2019.02.014
HUA Chun-jian, WANG Chao-fan, LU Yun-jian. Study on fracture behavior of metal pipes based on high and low frequency composite vibration [J]. Chinese Journal of Engineering Design, 2019, 26(2): 223-229.
doi: 10.3785/j.issn.1006-754X.2019.02.014
[13]   WEI Ke, ZHAN Mei, FAN Xiao-guang, et al. Unequal-thickness billet optimization in transitional region during isothermal local loading forming of Ti-alloy rib-web component using response surface method[J]. Chinese Journal of Aeronautics and Astronautics, 2018, 31(4): 845-859.
[14]   化春键,任皓靖,陆云健.双频激振系统下带V形槽棒料下料寿命模型[J]. 锻压技术,2019,44(7):177-183.
HUA Chun-jian, REN Hao-jing, LU Yun-jian. The blanking life model of bar with V-groove under dual-frequency excitation system[J]. Forging Technology, 2019, 44(7): 177-183.
[15]   化春键,王超凡,陆云健.双频振动金属管材分离过程可控性研究[J].塑性工程学报,2019,26(5):190-196. doi:10.3969/j.issn.1007-2012.2019.05.028
HUA Chun-jian, WANG Chao-fan, LU Yun-jian. Study on the controllability of the separation process of metal pipes with dual-frequency vibration[J]. Chinese Journal of Plastic Engineering, 2019, 26(5): 190-196.
doi: 10.3969/j.issn.1007-2012.2019.05.028
[16]   YU Hai-bing, CHEN Tie-feng, QIU Yan-jie. Optimal location and shape definition of elliptical ventilation openings on aero engine turbine rotors with stress concentration effect[J]. Chinese Journal of Aeronautics and Astronautics, 2022, 35(1): 388-397.
[17]   化春键,陆云健,袁浩.双频振动载荷下带V形槽铝合金棒料的断裂行为[J].中国机械工程,2017,28(14):1753-1758. doi:10.3969/j.issn.1004-132X.2017.14.020
HUA Chun-jian, LU Yun-jian, YUAN Hao. Fracture behavior of aluminum alloy bars with V-groove under dual-frequency vibration load[J]. China Mechanical Engineering, 2017, 28(14): 1753-1758.
doi: 10.3969/j.issn.1004-132X.2017.14.020
[18]   史丽晨,贾永康,张军锋.车削去除钛合金棒材表面氧化皮工艺参数试验研究[J].表面技术,2021,50(5):372-379.
SHI Li-chen, JIA Yong-kang, ZHANG Jun-feng. Experimental research on process parameters of removing oxide scale from titanium alloy bars by turning[J]. Surface Technology, 2021, 50(5): 372-379.
[19]   佘文韬,樊文欣,史永鹏,等.基于响应曲面法的连杆衬套表面粗糙度预测模型和优化[J].塑性工程学报,2017,24(6):172-176.
SHE Wen-tao, FAN Wen-xin, SHI Yong-peng, et al. Prediction model and optimization of connecting rod bushing surface roughness based on response surface method[J]. Chinese Journal of Plastic Engineering, 2017, 24(6): 172-176.
[20]   徐勇,尹阔,夏亮亮,等.面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化[J].航空学报,2021,42(10):358-369.
XU Yong, YIN Kuo, XIA Liang-liang, et al. Optimization of impact hydroforming process for aerospace aluminum alloy thin-walled deep cavity components[J]. Journal of Aeronautics and Astronautics, 2021, 42(10): 358-369.
[21]   陈涛,刘攀,徐晓.疲劳强度减弱系数与应力集中系数在螺纹疲劳分析中的应用研究[J].核动力工程,2018,39(3):62-66.
CHEN Tao, LIU Pan, XU Xiao. Application of fatigue strength reduction factor and stress concentration factor in thread fatigue analysis[J]. Nuclear Power Engineering, 2018, 39(3): 62-66.
[22]   赵仁峰,杨明顺,肖旭东,等.管材表面环状V形缺口几何参数对应力集中效应的影响[J].塑性工程学报,2020,27(12):106-112.
ZHAO Ren-feng, YANG Ming-shun, XIAO Xu-dong, et al. Influence of geometrical parameters of annular V-notch on pipe surface on stress concentration effect[J]. Chinese Journal of Plastic Engineering, 2020, 27(12): 106-112.
[23]   靖雅,钟飞,苑光健,等.基于晶体塑性理论的GH4169合金缺口效应研究[J].机械工程材料,2021,45(5):84-90,95. doi:10.11973/jxgccl202105015
JING Ya, ZHONG Fei, YUAN Guang-jian, et al. Research on notch effect of GH4169 alloy based on crystal plasticity theory[J]. Mechanical Engineering Materials, 2021, 45(5): 84-90, 95.
doi: 10.11973/jxgccl202105015
[1] Qisong QI,Chenggang LI,Qing DONG,Yuhao CHEN,Hang XU. Prediction of load spectrum for crane life cycle and structural optimal design based on fatigue life[J]. Chin J Eng Design, 2023, 30(3): 380-389.
[2] HAO Chun-yong, WANG Dong-liang, ZHENG Jin-yang, XU Ping, GU Chao-hua. Research on the relationship between burst pressure and fatigue life of composite hydrogen storage tank with aluminum liner[J]. Chin J Eng Design, 2021, 28(5): 594-601.
[3] GAO Qi-sheng, ZHU Xing-hua, YU Yan-kai, ZHENG Rong. Multi-objective optimal design of UUV pressure structure[J]. Chin J Eng Design, 2020, 27(2): 232-238.
[4] CHEN Zhen, ZHOU Yang, JING Shuang, HUANG Zhi-qiang, CHEN Yan. Study on damage mechanism and fatigue life prediction of seismic vibrator baseplate[J]. Chin J Eng Design, 2019, 26(6): 658-665.
[5] LI Song-mei, ZHENG Zhe, LI Shuai-shuai, CHANG De-gong. Structure and fatigue life analysis of damping type tripod universal joint[J]. Chin J Eng Design, 2019, 26(5): 520-526.
[6] WANG Gang, HUANG Ling-hui, LIU Jin-jun. Research on dynamic stress and fatigue life for ultra-deep mine hoist drum[J]. Chin J Eng Design, 2018, 25(6): 703-710.
[7] CHEN Hong-wu, PENG Cong-cong, TIAN Cheng, WANG Li-yuan. Optimal design for truss structure shape based on response surface method[J]. Chin J Eng Design, 2018, 25(4): 457-464.
[8] CAI Yu-qiang, ZHU Dong-sheng. Analysis of crankshaft fatigue life of high-speed crank press based on dynamics simulation[J]. Chin J Eng Design, 2017, 24(6): 680-686.
[9] REN Yuan, ZHANG Cheng-cheng, GAO Jing-yun, LI Meng-guang. Finite element simulation for the growth of the sealing labyrinth crack in turbine disc[J]. Chin J Eng Design, 2016, 23(2): 152-159,165.
[10] SHEN Jie-bin, TANG Dong-lin. Study of field size parameter in stress field intensity approach[J]. Chin J Eng Design, 2016, 23(1): 22-27.
[11] LIU Zhe, TAO Feng-he, JIA Chang-zhi. Fatigue life prediction on drive shaft of tracked vehicle and structure optimization[J]. Chin J Eng Design, 2015, 22(5): 431-437.
[12] ZHANG Qiang, WANG Hai-jian, HU Nan. Study on injury and fatigue life forecast of gantry crane's girder under rising load[J]. Chin J Eng Design, 2015, 22(5): 461-468.
[13] ZHAO Chun-jiang, XIONG Jie, YU Xiao-kai, HUANG Qing-xue, GE Shi-dong. Analysis on the influence of inertial load on the optimal preload of high-speed angular contact ball bearing[J]. Chin J Eng Design, 2015, 22(2): 150-154.
[14] MAO Jun, JIANG Peng, XIE Miao. Force analysis and life prediction of hydraulic rod on drum shearer under the condition of oblique cutting[J]. Chin J Eng Design, 2015, 22(1): 95-100.
[15] ZHAO Li-juan,LI Minghao. Analysis of the shearer´s rocker arm shell based on the multi-field coupling[J]. Chin J Eng Design, 2014, 21(3): 235-239.